scholarly journals Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality

Nanoscale ◽  
2022 ◽  
Author(s):  
Stanley Harvell-Smith ◽  
Le Duc Tung ◽  
Nguyen Thi Kim Thanh

Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an...

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sebastian Draack ◽  
Meinhard Schilling ◽  
Thilo Viereck

Abstract Magnetic particle imaging (MPI) is a young imaging modality for biomedical applications. It uses magnetic nanoparticles as a tracer material to produce three-dimensional images of the spatial tracer distribution in the field-of-view. Since the tracer magnetization dynamics are tied to the hydrodynamic mobility via the Brownian relaxation mechanism, MPI is also capable of mapping the local environment during the imaging process. Since the influence of viscosity or temperature on the harmonic spectrum is very complicated, we used magnetic particle spectroscopy (MPS) as an integral measurement technique to investigate the relationships. We studied MPS spectra as function of both viscosity and temperature on model particle systems. With multispectral MPS, we also developed an empirical tool for treating more complex scenarios via a calibration approach. We demonstrate that MPS/MPI are powerful methods for studying particle-matrix interactions in complex media.


Nanoscale ◽  
2019 ◽  
Vol 11 (16) ◽  
pp. 7771-7780 ◽  
Author(s):  
Eric Teeman ◽  
Carolyn Shasha ◽  
James E. Evans ◽  
Kannan M. Krishnan

An examination of the effects of intracellular environmental conditions on the dynamic magnetic response of superparamagnetic iron oxide nanoparticles.


2021 ◽  
Vol 22 (14) ◽  
pp. 7651
Author(s):  
Caroline Billings ◽  
Mitchell Langley ◽  
Gavin Warrington ◽  
Farzin Mashali ◽  
Jacqueline Anne Johnson

Magnetic nanoparticles (MNPs) have a wide range of applications; an area of particular interest is magnetic particle imaging (MPI). MPI is an imaging modality that utilizes superparamagnetic iron oxide particles (SPIONs) as tracer particles to produce highly sensitive and specific images in a broad range of applications, including cardiovascular, neuroimaging, tumor imaging, magnetic hyperthermia and cellular tracking. While there are hurdles to overcome, including accessibility of products, and an understanding of safety and toxicity profiles, MPI has the potential to revolutionize research and clinical biomedical imaging. This review will explore a brief history of MPI, MNP synthesis methods, current and future applications, and safety concerns associated with this newly emerging imaging modality.


2020 ◽  
Author(s):  
Kierstin P Melo ◽  
Ashley V Makela ◽  
Natasha N Knier ◽  
Amanda M Hamilton ◽  
Paula J Foster

AbstractIntroductionMagnetic particle imaging (MPI) is a new imaging modality that sensitively and specifically detects superparamagnetic iron oxide nanoparticles (SPIONs) within a sample. SPION-based MRI cell tracking has very high sensitivity, but low specificity and quantification of iron labeled cells is difficult. MPI cell tracking could overcome these challenges.MethodsMDM-AB-231BR cells labeled with MPIO, mice were intracardially injected with either 2.5 × 105 or 5.0 × 105 cells. MRI was performed in vivo the same day at 3T using a bSSFP sequence. After mice were imaged ex vivo with MPI. In a second experiment Mice received an intracardiac injection of either 2.5 × 10 5 or 5 × 10 4 MPIO-labeled 231BR cells. In a third experiment, mice were injected with 5 × 10 4 4T1BR cells, labelled with either MPIO or the SPION Vivotrax. MRI and MPI was performed in vivo.ResultsSignal from MPI and signal voids from MRI both showed more iron content in mice receiving an injection of 5.0 × 105 cells than the 2.5 × 105 injection. In the second experiment, Day 0 MRI showed signal voids and MPI signal was detected in all mouse brains. The MPI signal and iron content measured in the brains of mice that were injected with 2.5 × 10 5 cells were approximately four times greater than in brains injected with 5 × 10 4 cells. In the third experiment, in vivo MRI was able to detect signal voids in the brains of mice injected with Vivotrax and MPIO, although voids were fainter in Vivotrax labeled cells. In vivo MPI signal was only detectable in mice injected with MPIO-labeled cells.ConclusionThis is the first example of the use of MPIO for cell tracking with MPI. With an intracardiac cell injection, approximately 15% of the injected cells are expected to arrest in the brain vasculature. For our lowest cell injection of 5.0 × 104 cells this is ∼10000 cells.


Nanomedicine ◽  
2020 ◽  
Vol 15 (8) ◽  
pp. 739-753
Author(s):  
Antonella Antonelli ◽  
Patryk Szwargulski ◽  
Emanuele-Salvatore Scarpa ◽  
Florian Thieben ◽  
Grüttner Cordula ◽  
...  

Aim: Magnetic particle imaging (MPI) is highly promising for biomedical applications, but optimal tracers for MPI, namely superparamagnetic iron oxide-based contrast agents, are still lacking. Materials & methods: The encapsulation of commercially available nanoparticles, specifically synomag®-D and perimag®, into human red blood cells (RBCs) was performed by a hypotonic dialysis and isotonic resealing procedure. The amounts of superparamagnetic iron oxide incorporated into RBCs were determined by Fe quantification using nuclear magnetic resonance and magnetic particle spectroscopy. Results: Perimag-COOH nanoparticles were identified as the best nanomaterial for encapsulation in RBCs. Perimag-COOH-loaded RBCs proved to be viable cells showing a good magnetic particle spectroscopy performance, while the magnetic signal of synomag-D-COOH-loaded RBCs dropped sharply. Conclusion: Perimag-COOH-loaded RBCs could be a potential tool for MPI diagnostic applications.


2020 ◽  
Author(s):  
Julia Guzy ◽  
Shatadru Chakravarty ◽  
Foster Buchanan ◽  
Haoran Chen ◽  
Jeffrey M. Gaudet ◽  
...  

Magnetic particle imaging (MPI) is an exciting new biomedical imaging technology that uses superparamagnetic nanoparticles as an imaging tracer. MPI is touted as a quantitative imaging modality but MPI signal properties have never been characterized for nanoparticles undergoing biodegradation. Here we characterize the nature of the MPI signal properties as a function of degradation of various magnetic particle formulations. We show that MPI signal properties can increase or decrease as a function of nanoparticle formulation and chemical environment and that long-term in vitro experiments only roughly approximate long-term in vivo MPI signal properties. Data are supported by electron microscopy of nanoparticle degradation. Knowledge of MPI signal property changes during nanoparticle degradation will be critical in design and interpretation of all MPI experiments. Further, we demonstrate for the first time, an environmentally sensitive MPI contrast mechanism opening the door to smart contrast paradigms in MPI.<br>


Author(s):  
Olivia C. Sehl ◽  
Julia J. Gevaert ◽  
Kierstin P. Melo ◽  
Natasha N. Knier ◽  
Paula J. Foster

Magnetic Particle Imaging (MPI) is a new imaging modality that sensitively and specifically detects superparamagnetic iron oxide nanoparticles (SPIONs). Many labs have been developing cellular magnetic resonance imaging (MRI) tools using both SPIONs and fluorine-19 (19F)-based contrast agents for numerous important applications, including tracking of immune and stem cells used for cellular therapies. SPION-based MRI cell tracking has very high sensitivity, but low specificity. SPIONs produce negative contrast in MRI, or signal voids. SPIO is not directly detected by MRI, but indirectly through its relaxation effects on protons, therefore, it is not possible to reliably quantify the local tissue concentration of SPION particles and cell number cannot be determined. 19F based cell tracking uses perfluorocarbons (PFC) to label cells. The number of 19F atoms can be directly measured from 19F MR images and related to cell number. 19F MRI has high specificity, but low sensitivity. MPI cell tracking displays great potential for overcoming the challenges of MRI-based cell tracking allowing for both high cellular sensitivity and high specificity and quantification of SPIO labeled cell number. In this paper we describe nanoparticle and MPI system factors that influence MPI sensitivity and resolution, quantification methods and give our perspective on testing and applying MPI for cell tracking.


Sign in / Sign up

Export Citation Format

Share Document