Transition Metal Catalyzed C-H bond Activation/Functionalization and Annulation of Phthalazinones

Author(s):  
Chandrasekaran Sivaraj ◽  
Alagumalai Ramkumar ◽  
Nagesh Sankaran ◽  
THIRUMANAVELAN GANDHI

Phthalazinones and their higher congeners are commonly prevalent structural motifs that occur in natural products, bioactive molecules, and pharmaceuticals. In the past few decades transition metal-catalyzed reactions have received an...

Synthesis ◽  
2017 ◽  
Vol 50 (01) ◽  
pp. 1-16 ◽  
Author(s):  
Santosh Mhaske ◽  
Ranjeet Dhokale

The plethora of transformations attainable by the transition-metal-catalyzed reactions of arynes has found immense contemporary interest in the scientific community. This review highlights the scope and importance of transition-metal-catalyzed aryne reactions in the field of synthetic organic chemistry reported to date. It covers transformations achieved by the combination of arynes and various transition metals, which provide a facile access to a biaryl motif, fused polycyclic aromatic compounds, different novel carbocycles, various heterocycles, and complex natural products.1 Introduction2 Insertion of Arynes3 Annulation of Arynes4 Cycloaddition of Arynes5 Multicomponent Reactions of Arynes6 Miscellaneous Reactions of Arynes7 Total Synthesis of Natural Products Using Arynes8 Conclusion


Synthesis ◽  
2020 ◽  
Vol 52 (24) ◽  
pp. 3818-3836
Author(s):  
Jin-Heng Li ◽  
De-Lie An ◽  
Jing-Hao Qin

Heterocyclic compounds, especially N-heterocycles and O-heterocycles, are prominent structural motifs present in numerous natural products and medically and/or economically important compounds. This review aims to describe the development of transition-metal-catalyzed cycloaddition reactions of functionalized m-atom partners with alkynes to access a wide range of five-, six-, and seven-membered heterocycles, that is functionalized N-heterocycles and O-heterocycles such as azepines, isoquinolines, isocoumarins, spiroheterocycles, indoles, furans, and pyrroles, in a selectively controlled manner with an emphasis on scope and limitations and with a discussion of the mechanisms.1 Introduction2 Intermolecular Cycloaddition To Construct Azepine Derivatives2.1 [5+2] Cycloaddition2.2 [3+2+2] Cycloaddition2.3 [3+2]/[5+2] Cycloaddition3 Intermolecular [4+2] Cycloaddition To Construct Isoquinolines or Isocoumarins4 Intermolecular [3+2] Cycloaddition To Construct Spirohetero­cyclic Compounds, Indoles, Furans, and Pyrroles5 Summary and Outlook


2021 ◽  
Author(s):  
Sumeet Sahoo ◽  
SUBHABRATA DUTTA ◽  
Shaeel Al-Thabaiti ◽  
Mohamed Mokhtar Mostafa ◽  
Debabrata Maiti

Exo-metallacycles have become key reaction intermediates in activating various remote C(sp2)–H and C(sp3)–H bonds in the past decade and aided in achieving unusual site-selectivity. Various novel exo-chelating auxiliaries have assisted...


2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


2015 ◽  
Vol 20 (5) ◽  
pp. 471-511 ◽  
Author(s):  
Satyasheel Sharma ◽  
Neeraj Kumar Mishra ◽  
Youngmi Shin ◽  
In Su Kim

Sign in / Sign up

Export Citation Format

Share Document