scholarly journals Functionalization and metathesis polymerization induced self-assembly of an alternating copolymer into giant vesicles

RSC Advances ◽  
2021 ◽  
Vol 11 (25) ◽  
pp. 15153-15159
Author(s):  
Wei Song ◽  
Jiamin Shen ◽  
Xiang Li

Fluorine (FL) and perylene diimide-based (PDI) α,ω-dienes and α,ω-diacrylates were used to synthesise a series of homopolymers and alternating copolymers and provide spherical vesicles and micelles by metathesis polymerization.

2020 ◽  
Vol 11 (47) ◽  
pp. 7497-7505
Author(s):  
Jiannan Cheng ◽  
Kai Tu ◽  
Enjie He ◽  
Jinying Wang ◽  
Lifen Zhang ◽  
...  

A novel strategy for preparing block copolymers with semifluorinated alternating copolymers as macroinitiators was established by photocontrolled iodine-mediated RDRP under irradiation with blue LED light at room temperature.


2010 ◽  
Vol 114 (14) ◽  
pp. 4802-4810 ◽  
Author(s):  
Xiangkui Ren ◽  
Bin Sun ◽  
Chi-Chun Tsai ◽  
Yingfeng Tu ◽  
Siwei Leng ◽  
...  

2021 ◽  
Author(s):  
Huiying Wang ◽  
Qiang Chen ◽  
Zhen Geng ◽  
Jingyi Rao ◽  
Bijin Xiong ◽  
...  

Giant vesicles represent an extremely useful system to mimick biomembranes; however, available methodologies towards easy and direct vesicles construction are still scarce. By designing a hydrogen-bonding (H-bonding) amphiphilic ABA triblock...


Life ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 53 ◽  
Author(s):  
Hironori Sugiyama ◽  
Taro Toyota

Experimental evolution in chemical models of cells could reveal the fundamental mechanisms of cells today. Various chemical cell models, water-in-oil emulsions, oil-on-water droplets, and vesicles have been constructed in order to conduct research on experimental evolution. In this review, firstly, recent studies with these candidate models are introduced and discussed with regards to the two hierarchical directions of experimental evolution (chemical evolution and evolution of a molecular self-assembly). Secondly, we suggest giant vesicles (GVs), which have diameters larger than 1 µm, as promising chemical cell models for studying experimental evolution. Thirdly, since technical difficulties still exist in conventional GV experiments, recent developments of microfluidic devices to deal with GVs are reviewed with regards to the realization of open-ended evolution in GVs. Finally, as a future perspective, we link the concept of messy chemistry to the promising, unexplored direction of experimental evolution in GVs.


2018 ◽  
Vol 51 (21) ◽  
pp. 8940-8955 ◽  
Author(s):  
Christiana Nikovia ◽  
Lazaros Theodoridis ◽  
Stelios Alexandris ◽  
Panayiotis Bilalis ◽  
Nikos Hadjichristidis ◽  
...  

2021 ◽  
Vol 22 (21) ◽  
pp. 12075
Author(s):  
Mohammed A. Abosheasha ◽  
Toru Itagaki ◽  
Yoshihiro Ito ◽  
Motoki Ueda

The introduction of α-helical structure with a specific helix–helix interaction into an amphipathic molecule enables the determination of the molecular packing in the assembly and the morphological control of peptide assemblies. We previously reported that the amphiphilic polypeptide SL12 with a polysarcosine (PSar) hydrophilic chain and hydrophobic α-helix (l-Leu-Aib)6 involving the LxxxLxxxL sequence, which induces homo-dimerization due to the concave–convex interaction, formed a nanotube with a uniform 80 nm diameter. In this study, we investigated the importance of the LxxxLxxxL sequence for tube formation by comparing amphiphilic polypeptide SL4A4L4 with hydrophobic α-helix (l-Leu-Aib)2-(l-Ala-Aib)2-(l-Leu-Aib)2 and SL12. SL4A4L4 formed spherical vesicles and micelles. The effect of the LxxxLxxxL sequence elongation on tube formation was demonstrated by studying assemblies of PSar-b-(l-Ala-Aib)-(l-Leu-Aib)6-(l-Ala-Aib) (SA2L12A2) and PSar-b-(l-Leu-Aib)8 (SL16). SA2L12A2 formed nanotubes with a uniform 123 nm diameter, while SL16 assembled into vesicles. These results showed that LxxxLxxxL is a necessary and sufficient sequence for the self-assembly of nanotubes. Furthermore, we fabricated a double-layer nanotube by combining two kinds of nanotubes with 80 and 120 nm diameters—SL12 and SA2L12A2. When SA2L12A2 self-assembled in SL12 nanotube dispersion, SA2L12A2 initially formed a rolled sheet, the sheet then wrapped the SL12 nanotube, and a double-layer nanotube was obtained.


2020 ◽  
Vol 55 (24) ◽  
pp. 10910-10921
Author(s):  
Zi-Kun Rao ◽  
Hai-liang Ni ◽  
Yu Liu ◽  
Yang Li ◽  
Hong-Yu Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document