scholarly journals Bandgap adjustment assisted preparation of >18% CsyFA1−yPbIxBr3−x-based perovskite solar cells using a hybrid spraying process

RSC Advances ◽  
2021 ◽  
Vol 11 (29) ◽  
pp. 17595-17602
Author(s):  
Shengquan Fu ◽  
Yueyue Xiao ◽  
Xinxin Yu ◽  
Tianxing Xiang ◽  
Fei Long ◽  
...  

High-efficiency perovskite solar cells with good grain morphology and adjustable band gap were prepared by ultrasonic spray.

Author(s):  
Mengmeng Chen ◽  
Muhammad Akmal Kamarudin ◽  
Ajay K. Baranwal ◽  
Gaurav Kapil ◽  
Teresa S. Ripolles ◽  
...  

2019 ◽  
Author(s):  
Sofia Masi ◽  
Carlos Echeverría-Arrondo ◽  
Salim K.P. Muhammed ◽  
Thi Tuyen Ngo ◽  
Perla F. Méndez ◽  
...  

<b>The extraordinary low non-radiative recombination and band gap versatility of halide perovskites have led to considerable development in optoelectronic devices. However, this versatility is limited by the stability of the perovskite phase, related to the relative size of the different cations and anions. The most emblematic case is that of formamidinium lead iodine (FAPI) black phase, which has the lowest band gap among all 3D lead halide perovskites, but quickly transforms into the non-perovskite yellow phase at room temperature. Efforts to optimize perovskite solar cells have largely focused on the stabilization of FAPI based perovskite structures, often introducing alternative anions and cations. However, these approaches commonly result in a blue-shift of the band gap, which limits the maximum photo-conversion efficiency. Here, we report the use of PbS colloidal quantum dots (QDs) as stabilizing agent for the FAPI perovskite black phase. The surface chemistry of PbS plays a pivotal role, by developing strong bonds with the black phase but weak ones with the yellow phase. As a result, stable FAPI black phase can be formed at temperatures as low as 85°C in just 10 minutes, setting a record of concomitantly fast and low temperature formation for FAPI, with important consequences for industrialization. FAPI thin films obtained through this procedure preserve the original low band gap of 1.5 eV, reach a record open circuit potential (V<sub>oc</sub>) of 1.105 V -91% of the maximum theoretical V<sub>oc</sub>- and preserve high efficiency for more than 700 hours. These findings reveal the potential of strategies exploiting the chemi-structural properties of external additives to relax the tolerance factor and optimize the optoelectronic performance of perovskite materials.</b>


2020 ◽  
Author(s):  
Nahuel Martínez ◽  
Carlos Pinzón ◽  
Guillermo Casas ◽  
Fernando Alvira ◽  
Marcelo Cappelletti

All-inorganic perovskite solar cells (PSCs) with inverted p-i-n configuration have not yet reached the high efficiency achieved in the normal n-i-p architecture. However, the inverted all-inorganic PSC are more compatible with the fabrication of tandem solar cells. In this work, a theoretical study of all-inorganic PSCs with inverted structure ITO/HTL/CsPbI<sub>x</sub>Br<sub>3</sub>−x/ETL/Ag, has been performed by means of computer simulation. Four p‐type inorganic materials (NiO, Cu<sub>2</sub>O, CuSCN and CuI) and three n-type inorganic materials (ZnO, TiO<sub>2</sub> and SnO<sub>2</sub>) were used as hole and electron transport layers (HTL and ETL), respectively. A band gap of 1.78 eV was used for the CsPbI x Br<sub>3</sub>−x perovskite layer. The simulation results allow identifying that CuI and ZnO are the most appropriate materials as HTL and ETL, respectively. Additionally, optimized values of thickness, acceptor density and defect density in the absorber layer have been obtained for the ITO/CuI/CsPbI x Br<sub>3</sub>−x /ZnO/Ag, from which, an optimum efficiency of 21.82% was achieved. These promising theoretical results aim to improve the manufacturing process of inverted all-inorganic PSCs and to enhance the performance of perovskite–perovskite tandem solar cells. <br>


Solar Energy ◽  
2019 ◽  
Vol 188 ◽  
pp. 697-705 ◽  
Author(s):  
Jingsong Sun ◽  
Alexander R. Pascoe ◽  
Steffen Meyer ◽  
Qijie Wu ◽  
Enrico Della Gaspera ◽  
...  

2019 ◽  
Author(s):  
Sofia Masi ◽  
Carlos Echeverría-Arrondo ◽  
Salim K.P. Muhammed ◽  
Thi Tuyen Ngo ◽  
Perla F. Méndez ◽  
...  

<b>The extraordinary low non-radiative recombination and band gap versatility of halide perovskites have led to considerable development in optoelectronic devices. However, this versatility is limited by the stability of the perovskite phase, related to the relative size of the different cations and anions. The most emblematic case is that of formamidinium lead iodine (FAPI) black phase, which has the lowest band gap among all 3D lead halide perovskites, but quickly transforms into the non-perovskite yellow phase at room temperature. Efforts to optimize perovskite solar cells have largely focused on the stabilization of FAPI based perovskite structures, often introducing alternative anions and cations. However, these approaches commonly result in a blue-shift of the band gap, which limits the maximum photo-conversion efficiency. Here, we report the use of PbS colloidal quantum dots (QDs) as stabilizing agent for the FAPI perovskite black phase. The surface chemistry of PbS plays a pivotal role, by developing strong bonds with the black phase but weak ones with the yellow phase. As a result, stable FAPI black phase can be formed at temperatures as low as 85°C in just 10 minutes, setting a record of concomitantly fast and low temperature formation for FAPI, with important consequences for industrialization. FAPI thin films obtained through this procedure preserve the original low band gap of 1.5 eV, reach a record open circuit potential (V<sub>oc</sub>) of 1.105 V -91% of the maximum theoretical V<sub>oc</sub>- and preserve high efficiency for more than 700 hours. These findings reveal the potential of strategies exploiting the chemi-structural properties of external additives to relax the tolerance factor and optimize the optoelectronic performance of perovskite materials.</b>


Science ◽  
2019 ◽  
Vol 364 (6439) ◽  
pp. 475-479 ◽  
Author(s):  
Jinhui Tong ◽  
Zhaoning Song ◽  
Dong Hoe Kim ◽  
Xihan Chen ◽  
Cong Chen ◽  
...  

All-perovskite–based polycrystalline thin-film tandem solar cells have the potential to deliver efficiencies of >30%. However, the performance of all-perovskite–based tandem devices has been limited by the lack of high-efficiency, low–band gap tin-lead (Sn-Pb) mixed-perovskite solar cells (PSCs). We found that the addition of guanidinium thiocyanate (GuaSCN) resulted in marked improvements in the structural and optoelectronic properties of Sn-Pb mixed, low–band gap (~1.25 electron volt) perovskite films. The films have defect densities that are lower by a factor of 10, leading to carrier lifetimes of greater than 1 microsecond and diffusion lengths of 2.5 micrometers. These improved properties enable our demonstration of >20% efficient low–band gap PSCs. When combined with wider–band gap PSCs, we achieve 25% efficient four-terminal and 23.1% efficient two-terminal all-perovskite–based polycrystalline thin-film tandem solar cells.


2020 ◽  
Author(s):  
Nahuel Martínez ◽  
Carlos Pinzón ◽  
Guillermo Casas ◽  
Fernando Alvira ◽  
Marcelo Cappelletti

All-inorganic perovskite solar cells (PSCs) with inverted p-i-n configuration have not yet reached the high efficiency achieved in the normal n-i-p architecture. However, the inverted all-inorganic PSC are more compatible with the fabrication of tandem solar cells. In this work, a theoretical study of all-inorganic PSCs with inverted structure ITO/HTL/CsPbI<sub>x</sub>Br<sub>3</sub>−x/ETL/Ag, has been performed by means of computer simulation. Four p‐type inorganic materials (NiO, Cu<sub>2</sub>O, CuSCN and CuI) and three n-type inorganic materials (ZnO, TiO<sub>2</sub> and SnO<sub>2</sub>) were used as hole and electron transport layers (HTL and ETL), respectively. A band gap of 1.78 eV was used for the CsPbI x Br<sub>3</sub>−x perovskite layer. The simulation results allow identifying that CuI and ZnO are the most appropriate materials as HTL and ETL, respectively. Additionally, optimized values of thickness, acceptor density and defect density in the absorber layer have been obtained for the ITO/CuI/CsPbI x Br<sub>3</sub>−x /ZnO/Ag, from which, an optimum efficiency of 21.82% was achieved. These promising theoretical results aim to improve the manufacturing process of inverted all-inorganic PSCs and to enhance the performance of perovskite–perovskite tandem solar cells. <br>


Nano Energy ◽  
2021 ◽  
Vol 82 ◽  
pp. 105712
Author(s):  
Sisi Wang ◽  
Zhipeng Zhang ◽  
Zikang Tang ◽  
Chenliang Su ◽  
Wei Huang ◽  
...  

2021 ◽  
pp. 2001466
Author(s):  
Yali Chen ◽  
Xuejiao Zuo ◽  
Yiyang He ◽  
Fang Qian ◽  
Shengnan Zuo ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Tianhao Wu ◽  
Zhenzhen Qin ◽  
Yanbo Wang ◽  
Yongzhen Wu ◽  
Wei Chen ◽  
...  

AbstractPerovskite solar cells (PSCs) emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world. Both the efficiency and stability of PSCs have increased steadily in recent years, and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step. This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency, stability, perovskite-based tandem devices, and lead-free PSCs. Moreover, a brief discussion on the development of PSC modules and its challenges toward practical application is provided.


Sign in / Sign up

Export Citation Format

Share Document