scholarly journals Chemi-Structural Stabilization of Formamidinium Lead Iodide Perovskite by Using Embedded Quantum Dots for High-Performance Solar Cells

Author(s):  
Sofia Masi ◽  
Carlos Echeverría-Arrondo ◽  
Salim K.P. Muhammed ◽  
Thi Tuyen Ngo ◽  
Perla F. Méndez ◽  
...  

<b>The extraordinary low non-radiative recombination and band gap versatility of halide perovskites have led to considerable development in optoelectronic devices. However, this versatility is limited by the stability of the perovskite phase, related to the relative size of the different cations and anions. The most emblematic case is that of formamidinium lead iodine (FAPI) black phase, which has the lowest band gap among all 3D lead halide perovskites, but quickly transforms into the non-perovskite yellow phase at room temperature. Efforts to optimize perovskite solar cells have largely focused on the stabilization of FAPI based perovskite structures, often introducing alternative anions and cations. However, these approaches commonly result in a blue-shift of the band gap, which limits the maximum photo-conversion efficiency. Here, we report the use of PbS colloidal quantum dots (QDs) as stabilizing agent for the FAPI perovskite black phase. The surface chemistry of PbS plays a pivotal role, by developing strong bonds with the black phase but weak ones with the yellow phase. As a result, stable FAPI black phase can be formed at temperatures as low as 85°C in just 10 minutes, setting a record of concomitantly fast and low temperature formation for FAPI, with important consequences for industrialization. FAPI thin films obtained through this procedure preserve the original low band gap of 1.5 eV, reach a record open circuit potential (V<sub>oc</sub>) of 1.105 V -91% of the maximum theoretical V<sub>oc</sub>- and preserve high efficiency for more than 700 hours. These findings reveal the potential of strategies exploiting the chemi-structural properties of external additives to relax the tolerance factor and optimize the optoelectronic performance of perovskite materials.</b>

2019 ◽  
Author(s):  
Sofia Masi ◽  
Carlos Echeverría-Arrondo ◽  
Salim K.P. Muhammed ◽  
Thi Tuyen Ngo ◽  
Perla F. Méndez ◽  
...  

<b>The extraordinary low non-radiative recombination and band gap versatility of halide perovskites have led to considerable development in optoelectronic devices. However, this versatility is limited by the stability of the perovskite phase, related to the relative size of the different cations and anions. The most emblematic case is that of formamidinium lead iodine (FAPI) black phase, which has the lowest band gap among all 3D lead halide perovskites, but quickly transforms into the non-perovskite yellow phase at room temperature. Efforts to optimize perovskite solar cells have largely focused on the stabilization of FAPI based perovskite structures, often introducing alternative anions and cations. However, these approaches commonly result in a blue-shift of the band gap, which limits the maximum photo-conversion efficiency. Here, we report the use of PbS colloidal quantum dots (QDs) as stabilizing agent for the FAPI perovskite black phase. The surface chemistry of PbS plays a pivotal role, by developing strong bonds with the black phase but weak ones with the yellow phase. As a result, stable FAPI black phase can be formed at temperatures as low as 85°C in just 10 minutes, setting a record of concomitantly fast and low temperature formation for FAPI, with important consequences for industrialization. FAPI thin films obtained through this procedure preserve the original low band gap of 1.5 eV, reach a record open circuit potential (V<sub>oc</sub>) of 1.105 V -91% of the maximum theoretical V<sub>oc</sub>- and preserve high efficiency for more than 700 hours. These findings reveal the potential of strategies exploiting the chemi-structural properties of external additives to relax the tolerance factor and optimize the optoelectronic performance of perovskite materials.</b>


Author(s):  
Mengmeng Chen ◽  
Muhammad Akmal Kamarudin ◽  
Ajay K. Baranwal ◽  
Gaurav Kapil ◽  
Teresa S. Ripolles ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (29) ◽  
pp. 17595-17602
Author(s):  
Shengquan Fu ◽  
Yueyue Xiao ◽  
Xinxin Yu ◽  
Tianxing Xiang ◽  
Fei Long ◽  
...  

High-efficiency perovskite solar cells with good grain morphology and adjustable band gap were prepared by ultrasonic spray.


2018 ◽  
Vol 6 (19) ◽  
pp. 8886-8894 ◽  
Author(s):  
Nianqing Fu ◽  
Chun Huang ◽  
Peng Lin ◽  
Mingshan Zhu ◽  
Tao Li ◽  
...  

Dual-functional black phosphorus quantum dot electron selective layer was designed for plastic perovskite solar cells. The efficient electron extraction and improved perovskite film quality contributed to the reasonably high efficiency.


2020 ◽  
Vol 4 (1) ◽  
pp. 324-330 ◽  
Author(s):  
Muhammad Sohail Abbas ◽  
Sabir Hussain ◽  
Jinaqi Zhang ◽  
Boxin Wang ◽  
Chen Yang ◽  
...  

A 2D–3D perovskite, in which 3D perovskite phase is bridged by 2D perovskite having periodically repeated vertical orientation is reported. It's PCE and stability is better than 3D MAPbI3 and it is an excellent structural strategy to improve stability of perovskite solar cells.


MRS Advances ◽  
2018 ◽  
Vol 3 (55) ◽  
pp. 3237-3242 ◽  
Author(s):  
Zahrah S. Almutawah ◽  
Suneth C. Watthage ◽  
Zhaoning Song ◽  
Ramez H. Ahangharnejhad ◽  
Kamala K. Subedi ◽  
...  

ABSTRACTMethods of obtaining large grain size and high crystallinity in absorber materials play an important role in fabrication of high-performance methylammonium lead iodide (MAPbI3) perovskite solar cells. Here we study the effect of adding small concentrations of Cd2+, Zn2+, and Fe2+salts to the perovskite precursor solution used in the single-step solution fabrication process. Enhanced grain size and crystallinity in MAPbI3 films were obtained by using 0.1% of Cd2+ or Zn2+in the precursor solution. Consequently, solar cells constructed with Cd- and Zn-doped perovskite films show a significant improvement in device performance. These results suggest that the process may be an effective and facile method to fabricate high-efficiency perovskite photovoltaic devices.


2017 ◽  
Vol 3 (9) ◽  
pp. e1700841 ◽  
Author(s):  
Taiyang Zhang ◽  
M. Ibrahim Dar ◽  
Ge Li ◽  
Feng Xu ◽  
Nanjie Guo ◽  
...  

2020 ◽  
Author(s):  
Nahuel Martínez ◽  
Carlos Pinzón ◽  
Guillermo Casas ◽  
Fernando Alvira ◽  
Marcelo Cappelletti

All-inorganic perovskite solar cells (PSCs) with inverted p-i-n configuration have not yet reached the high efficiency achieved in the normal n-i-p architecture. However, the inverted all-inorganic PSC are more compatible with the fabrication of tandem solar cells. In this work, a theoretical study of all-inorganic PSCs with inverted structure ITO/HTL/CsPbI<sub>x</sub>Br<sub>3</sub>−x/ETL/Ag, has been performed by means of computer simulation. Four p‐type inorganic materials (NiO, Cu<sub>2</sub>O, CuSCN and CuI) and three n-type inorganic materials (ZnO, TiO<sub>2</sub> and SnO<sub>2</sub>) were used as hole and electron transport layers (HTL and ETL), respectively. A band gap of 1.78 eV was used for the CsPbI x Br<sub>3</sub>−x perovskite layer. The simulation results allow identifying that CuI and ZnO are the most appropriate materials as HTL and ETL, respectively. Additionally, optimized values of thickness, acceptor density and defect density in the absorber layer have been obtained for the ITO/CuI/CsPbI x Br<sub>3</sub>−x /ZnO/Ag, from which, an optimum efficiency of 21.82% was achieved. These promising theoretical results aim to improve the manufacturing process of inverted all-inorganic PSCs and to enhance the performance of perovskite–perovskite tandem solar cells. <br>


2019 ◽  
Vol 10 (41) ◽  
pp. 9530-9541 ◽  
Author(s):  
Dibyendu Ghosh ◽  
Dhirendra K. Chaudhary ◽  
Md. Yusuf Ali ◽  
Kamlesh Kumar Chauhan ◽  
Sayan Prodhan ◽  
...  

Grain boundaries in bulk perovskite films are considered as giant trapping sites for photo-generated carriers. Surface engineering via inorganic perovskite quantum dots has been employed for creating monolithically grained, pin-hole free perovskite films.


Sign in / Sign up

Export Citation Format

Share Document