scholarly journals Recent advances in heteroatom-doped graphene quantum dots for sensing applications

RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25586-25615
Author(s):  
Neeraj Sohal ◽  
Banibrata Maity ◽  
Soumen Basu

Graphene quantum dots (GQDs) are carbon-based fluorescent nanomaterials having various applications due to attractive properties.

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Kenshin Takemura ◽  
Jun Satoh ◽  
Jirayu Boonyakida ◽  
Sungjo Park ◽  
Ankan Dutta Chowdhury ◽  
...  

Abstract Background With the enormous increment of globalization and global warming, it is expected that the number of newly evolved infectious diseases will continue to increase. To prevent damage due to these infections, the development of a diagnostic method for detecting a virus with high sensitivity in a short time is highly desired. In this study, we have developed a disposable electrode with high-sensitivity and accuracy to evaluate its performances for several target viruses. Results Conductive silicon rubber (CSR) was used to fabricate a disposable sensing matrix composed of nitrogen and sulfur-co-doped graphene quantum dots (N,S-GQDs) and a gold-polyaniline nanocomposite (AuNP-PAni). A specific anti-white spot syndrome virus (WSSV) antibody was conjugated to the surface of this nanocomposite, which was successfully applied for the detection of WSSV over a wide linear range of concentration from 1.45 × 102 to 1.45 × 105 DNA copies/ml, with a detection limit as low as 48.4 DNA copies/ml. Conclusion The engineered sensor electrode can retain the detection activity up to 5 weeks, to confirm its long-term stability, required for disposable sensing applications. This is the first demonstration of the detection of WSSV by a nanofabricated sensing electrode with high sensitivity, selectivity, and stability, providing as a potential diagnostic tool to monitor WSSV in the aquaculture industry.


Author(s):  
Rahul V. Khose ◽  
Prachi Bangde ◽  
Mahesh P. Bondarde ◽  
Pratik S. Dhumal ◽  
Madhuri A. Bhakare ◽  
...  

The Analyst ◽  
2016 ◽  
Vol 141 (9) ◽  
pp. 2619-2628 ◽  
Author(s):  
Ying Yulong ◽  
Peng Xinsheng

Graphene quantum dots (GQDs) and carbon quantum dots (CQDs) demonstrate unique properties in the electroanalysis field, including electroresistance, electrochemiluminescence, electrochemical and photoelectrochemical sensors.


The Analyst ◽  
2015 ◽  
Vol 140 (22) ◽  
pp. 7468-7486 ◽  
Author(s):  
Yongqiang Dong ◽  
Jianhua Cai ◽  
Xu You ◽  
Yuwu Chi

Carbon based dots (CDs) including carbon quantum dots and graphene quantum dots exhibit unique luminescence properties, such as photoluminescence (PL), chemiluminescence (CL) and electrochemiluminescence (ECL).


2020 ◽  
Author(s):  
Kenshin Takemura ◽  
Jun Satoh ◽  
Jirayu Boonyakida ◽  
Sungjo Park ◽  
Ankan Dutta Chowdhury ◽  
...  

Abstract Background: With the enormous increment of globalization and global warming, it is expected that the number of newly evolved infectious diseases will continue to increase. To prevent damage due to these infections, the development of a diagnostic method for detecting a virus with high sensitivity in a short time is highly desired. In this study, we have developed a disposable electrode with high-sensitivity and accuracy to evaluate its performances for several target viruses.Results: Conductive silicon rubber (CSR) was used to fabricate a disposable sensing matrix composed of nitrogen and sulfur-co-doped graphene quantum dots (N,S-GQDs) and a gold-polyaniline nanocomposite (AuNP-PAni). A specific anti-white spot syndrome virus (WSSV) antibody was conjugated to the surface of this nanocomposite, which was successfully applied for the detection of WSSV over a wide linear range of concentration from 1.45 × 102 to 1.45 × 10⁵ DNA copies/ml, with a detection limit as low as 48.4 DNA copies/ml.Conclusion: The engineered sensor electrode can retain the detection activity up to 5 weeks, to confirm its long-term stability, required for disposable sensing applications. This is the first demonstration of the detection of WSSV by a nanofabricated sensing electrode with high sensitivity, selectivity, and stability, providing as a potential diagnostic tool to monitor WSSV in the aquaculture industry.


RSC Advances ◽  
2016 ◽  
Vol 6 (43) ◽  
pp. 36554-36560 ◽  
Author(s):  
Hongbo Xu ◽  
Shenghai Zhou ◽  
Lili Xiao ◽  
Qunhui Yuan ◽  
Wei Gan

N,S co-doped GQDs with fast preparation and tunable fluorescence were developed and employed as fluorescence probe for selective detection of Fe3+.


Sign in / Sign up

Export Citation Format

Share Document