scholarly journals Electrochemical detection of white spot syndrome virus with a silicone rubber disposable electrode composed of graphene quantum dots and gold nanoparticle-embedded polyaniline nanowires

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Kenshin Takemura ◽  
Jun Satoh ◽  
Jirayu Boonyakida ◽  
Sungjo Park ◽  
Ankan Dutta Chowdhury ◽  
...  

Abstract Background With the enormous increment of globalization and global warming, it is expected that the number of newly evolved infectious diseases will continue to increase. To prevent damage due to these infections, the development of a diagnostic method for detecting a virus with high sensitivity in a short time is highly desired. In this study, we have developed a disposable electrode with high-sensitivity and accuracy to evaluate its performances for several target viruses. Results Conductive silicon rubber (CSR) was used to fabricate a disposable sensing matrix composed of nitrogen and sulfur-co-doped graphene quantum dots (N,S-GQDs) and a gold-polyaniline nanocomposite (AuNP-PAni). A specific anti-white spot syndrome virus (WSSV) antibody was conjugated to the surface of this nanocomposite, which was successfully applied for the detection of WSSV over a wide linear range of concentration from 1.45 × 102 to 1.45 × 105 DNA copies/ml, with a detection limit as low as 48.4 DNA copies/ml. Conclusion The engineered sensor electrode can retain the detection activity up to 5 weeks, to confirm its long-term stability, required for disposable sensing applications. This is the first demonstration of the detection of WSSV by a nanofabricated sensing electrode with high sensitivity, selectivity, and stability, providing as a potential diagnostic tool to monitor WSSV in the aquaculture industry.

2020 ◽  
Author(s):  
Kenshin Takemura ◽  
Jun Satoh ◽  
Jirayu Boonyakida ◽  
Sungjo Park ◽  
Ankan Dutta Chowdhury ◽  
...  

Abstract Background: With the enormous increment of globalization and global warming, it is expected that the number of newly evolved infectious diseases will continue to increase. To prevent damage due to these infections, the development of a diagnostic method for detecting a virus with high sensitivity in a short time is highly desired. In this study, we have developed a disposable electrode with high-sensitivity and accuracy to evaluate its performances for several target viruses.Results: Conductive silicon rubber (CSR) was used to fabricate a disposable sensing matrix composed of nitrogen and sulfur-co-doped graphene quantum dots (N,S-GQDs) and a gold-polyaniline nanocomposite (AuNP-PAni). A specific anti-white spot syndrome virus (WSSV) antibody was conjugated to the surface of this nanocomposite, which was successfully applied for the detection of WSSV over a wide linear range of concentration from 1.45 × 102 to 1.45 × 10⁵ DNA copies/ml, with a detection limit as low as 48.4 DNA copies/ml.Conclusion: The engineered sensor electrode can retain the detection activity up to 5 weeks, to confirm its long-term stability, required for disposable sensing applications. This is the first demonstration of the detection of WSSV by a nanofabricated sensing electrode with high sensitivity, selectivity, and stability, providing as a potential diagnostic tool to monitor WSSV in the aquaculture industry.


2020 ◽  
Author(s):  
Kenshin Takemura ◽  
Jun Satoh ◽  
Jirayu Boonyakida ◽  
Sungjo Park ◽  
Ankan Dutta Chowdhury ◽  
...  

Abstract Background: With the enormous increment of globalization and global warming, it is expected that the number of newly evolved infectious diseases will continue to increase. To prevent damage due to these infections, the development of a diagnostic method for detecting a virus with high sensitivity in a short time is highly desired. In this study, we have developed a high-sensitivity and high-accuracy disposable electrode and evaluated it for several target viruses.Results: Conductive silicon rubber (CSR) was used to fabricate a disposable sensing matrix composed of nitrogen and sulfur-codoped graphene quantum dots (N,S-GQDs) and a gold-polyaniline nanocomposite (AuNP-PAni). A specific anti-white spot syndrome virus (WSSV) antibody was conjugated to the surface of this nanocomposite, which was successfully applied for the detection of WSSV over a wide linear range of 1.45 × 102 to 1.45 × 10⁵ DNA copies/ml, with a detection limit as low as 48.4 DNA copies/ml.Conclusion: The engineered sensor electrode can retain the detection activity for up to 5 weeks, a vital long-term stability requirement for disposable sensing applications. This is the first demonstration of the detection of WSSV by a nanofabricated sensing electrode with high sensitivity, selectivity, and stability, providing a potential diagnostic tool to monitor WSSV in the aquaculture industry.


2020 ◽  
Author(s):  
Kenshin Takemura ◽  
Jun Satoh ◽  
Jirayu Boonyakida ◽  
Sungjo Park ◽  
Ankan Dutta Chowdhury ◽  
...  

Abstract Background: With the enormous increment of globalization and global warming, it is expected that the number of newly evolved infectious diseases will continue to increase. To prevent damage due to these infections, the development of a diagnostic method for detecting a virus with high sensitivity in a short time is highly desired. In this study, we have developed a high-sensitivity and high-accuracy disposable electrode and evaluated it for several target viruses. Results: Conductive silicon rubber (CSR) was used to fabricate a disposable sensing matrix composed of nitrogen and sulfur-codoped graphene quantum dots (N,S-GQDs) and a gold-polyaniline nanocomposite (AuNP-PAni). A specific anti-white spot syndrome virus (WSSV) antibody was conjugated to the surface of this nanocomposite, which wassuccessfully applied for the detection of WSSV over a wide linear range of 1.45 × 10 2 to 1.45 × 10⁵ DNA copies/ml, with a detection limit as low as 48.4 DNA copies/ml. Conclusion: The engineered sensor electrode can retain the detection activity for up to 5 weeks, a vital long-term stability requirement for disposable sensing applications. This is the first demonstration of the detection of WSSV by ananofabricated sensing electrode with high sensitivity, selectivity, and stability, providing a potential diagnostic tool to monitor WSSV in the aquaculture industry.


2017 ◽  
Vol 4 (11) ◽  
pp. 171199 ◽  
Author(s):  
Sami Ben Aoun

A highly selective and sensitive dopamine electrochemical sensor based on nitrogen-doped graphene quantum dots–chitosan nanocomposite-modified nanostructured screen printed carbon electrode is presented, for the first time. Graphene quantum dots were prepared via microwave-assisted hydrothermal reaction of glucose, and nitrogen doping was realized by introducing ammonia in the reaction mixture. Chitosan incorporation played a significant role towards the selectivity of the prepared sensor by hindering the ascorbic acid interference and enlarging the peak potential separation between dopamine and uric acid. The proposed sensor's performance was shown to be superior to several recently reported investigations. The as-prepared CS/N,GQDs@SPCE exhibited a high sensitivity (i.e. ca. 418 µA mM cm −2 ), a wide linear range i.e. (1–100 µM) and (100–200 µM) with excellent correlations (i.e. R 2  = 0.999 and R 2  = 1.000, respectively) and very low limit of detection (LOD = 0.145 µM) and limit of quantification (LOQ = 0.482 µM) based on S / N  = 3 and 10, respectively. The applicability of the prepared sensor for real sample analysis was tested by the determination of dopamine in human urine in pH 7.0 PBS showing an approximately 100% recovery with RSD < 2% inferring both the practicability and reliability of CS/N,GQDs@SPCE. The proposed sensor is endowed with high reproducibility (i.e. RSD = ca. 3.61%), excellent repeatability (i.e. ca. 0.91% current change) and a long-term stability (i.e. ca. 94.5% retained activity).


Author(s):  
Rahul V. Khose ◽  
Prachi Bangde ◽  
Mahesh P. Bondarde ◽  
Pratik S. Dhumal ◽  
Madhuri A. Bhakare ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25586-25615
Author(s):  
Neeraj Sohal ◽  
Banibrata Maity ◽  
Soumen Basu

Graphene quantum dots (GQDs) are carbon-based fluorescent nanomaterials having various applications due to attractive properties.


2020 ◽  
Vol 8 (23) ◽  
pp. 11734-11742
Author(s):  
Rahul Purbia ◽  
Yeong Min Kwon ◽  
Hong-Dae Kim ◽  
Yun Sik Lee ◽  
Heungjoo Shin ◽  
...  

Facile synthesis of zero-dimensional heterostructures consisting of N-doped graphene quantum dots (N-GDs) and SnO2 nanoparticles is reported for the NO2 gas sensor with high sensitivity and excellent selectivity.


RSC Advances ◽  
2016 ◽  
Vol 6 (43) ◽  
pp. 36554-36560 ◽  
Author(s):  
Hongbo Xu ◽  
Shenghai Zhou ◽  
Lili Xiao ◽  
Qunhui Yuan ◽  
Wei Gan

N,S co-doped GQDs with fast preparation and tunable fluorescence were developed and employed as fluorescence probe for selective detection of Fe3+.


Sign in / Sign up

Export Citation Format

Share Document