scholarly journals H2O2-independent chemodynamic therapy initiated from magnetic iron carbide nanoparticle-assisted artemisinin synergy

RSC Advances ◽  
2021 ◽  
Vol 11 (59) ◽  
pp. 37504-37513
Author(s):  
Fan Zhao ◽  
Jing Yu ◽  
Weiliang Gao ◽  
Xue Yang ◽  
Liying Liang ◽  
...  

Chemodynamic therapy (CDT) is a booming technology that utilizes Fenton reagents to kill tumor cells by transforming intracellular H2O2 into reactive oxygen species (ROS), but insufficient endogenous H2O2 makes it difficult to attain satisfactory antitumor results.

2020 ◽  
Vol 21 (5) ◽  
pp. 477-498
Author(s):  
Yongfeng Chen ◽  
Xingjing Luo ◽  
Zhenyou Zou ◽  
Yong Liang

Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients’ life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.


2021 ◽  
Author(s):  
Ye Zhao ◽  
Hai-Ming Feng ◽  
Xiao-Ping Wei ◽  
Wei-Jian Yan ◽  
Bin Li ◽  
...  

Abstract Reactive Oxygen Species (ROS) are present in high amount in patients with tumors, and these ROS can kill and destroy tumor cells. Thus, tumor cells upregulate ROS-related genes to protect themselves and reduce their destruction. Cancer cells already damaged by ROS can be repaired by expressing DNA repair genes consequently promoting their proliferation. In this work, lung adenocarcinoma (LUAD) transcriptome data in the TCGA database was analyzed and samples were clustered into 5 ROS-related categories and 6 DNA repair categories. Survival analysis revealed a significant difference in patient survival between the two classification methods. In addition, the samples corresponding to the two categories overlap, thus, the gene expression profile of the same sample with different categories and survival prognosis was further explored, and the connection between ROS-related genes and DNA repair genes was investigated. The interactive sample recombination classification was used, revealing that the patient's prognosis was worse when the ROS-related genes and DNA repair genes were expressed at the same time. The further research on the potential regulatory network of the two categories of genes and the correlation analysis revealed that ROS-related genes and DNA repair genes have a mutual regulatory relationship. The ROS-related genes NQO1, TXNRD1, and PRDX4 could establish links with other DNA repair genes through the DNA repair gene NEIL3, thereby increasing the growth of tumor cells and balancing the level of ROS, leading to tumor cell death and constant damage to the tumor cell repair system, thus prolonging patient survival. Thus, targeting ROS-related genes and DNA repair genes might be a promising strategy in the treatment of LUAD. Finally, a survival prognostic model of ROS-related genes and DNA repair genes was established (TERT, PRKDC, PTTG1, SMUG1, TXNRD1, CAT, H2AFX and PFKP), the risk score might be used as an independent prognostic factor in LUAD patients.


2017 ◽  
Vol 313 (6) ◽  
pp. R646-R653 ◽  
Author(s):  
Mohamad Assi

The large doses of vitamins C and E and β-carotene used to reduce reactive oxygen species (ROS) production and oxidative damages in cancerous tissue have produced disappointing and contradictory results. This therapeutic conundrum was attributed to the double-faced role of ROS, notably, their ability to induce either proliferation or apoptosis of cancer cells. However, for a ROS-inhibitory approach to be effective, it must target ROS when they induce proliferation rather than apoptosis. On the basis of recent advances in redox biology, this review underlined a differential regulation of prooxidant and antioxidant system, respective to the stage of cancer. At early precancerous and neoplastic stages, antioxidant activity decreases and ROS appear to promote cancer initiation via inducing oxidative damage and base pair substitution mutations in prooncogenes and tumor suppressor genes, such as RAS and TP53, respectively. Whereas in late stages of cancer progression, tumor cells escape apoptosis by producing high levels of intracellular antioxidants, like NADPH and GSH, via the pentose phosphate pathway to buffer the excessive production of ROS and related intratumor oxidative injuries. Therefore, antioxidants should be prohibited in patients with advanced stages of cancer and/or undergoing anticancer therapies. Interestingly, the biochemical and biophysical properties of some polyphenols allow them to selectively recognize tumor cells. This characteristic was exploited to design and deliver nanoparticles coated with low doses of polyphenols and containing chemotherapeutic drugs into tumor-bearing animals. First results are encouraging, which may revolutionize the conventional use of antioxidants in cancer.


2020 ◽  
Vol 8 (12) ◽  
pp. 2508-2518
Author(s):  
Zhigao Lu ◽  
Wang Jia ◽  
Ruijun Deng ◽  
Yue Zhou ◽  
Xue Li ◽  
...  

The traditional photodynamic therapy (PDT) using a photosensitizer and oxygen under light generates reactive oxygen species (ROS) to kill tumor cells.


2010 ◽  
Vol 5 (5) ◽  
pp. 590-599 ◽  
Author(s):  
Michał Skrzycki ◽  
Monika Majewska ◽  
Hanna Czeczot

AbstractImpairments of antioxidant enzyme expression are often concomitant with the onset of cancer. Due to epigenetic factors causing an inflammatory state the gastrointestinal tract can become exposed to reactive oxygen species. The purpose of our work was to evaluate mRNA and protein levels of superoxide dismutase isoenzymes in human colorectal adenocarcinoma due to its clinical advancement, and in colorectal cancer liver metastases. Evaluation of SOD expression in regard to CRC advancement, seems useful for clinical applications due to different tumor cells sensitivity to reactive oxygen species based treatment. Studies were conducted on a group of 27 patients: 15 diagnosed with colorectal adenocarcinoma and 12 diagnosed with colorectal cancer liver metastases. The mRNA level was determined by RT-PCR, and protein level by Western blotting. We observed significant (P≤0.05) changes of mRNA and protein level of SOD isoenzymes in subsequent stages of colorectal adenocarcinoma advancement and in colorectal cancer liver metastases. Differences in mRNA and protein level of SOD isoenzymes in colorectal adenocarcinoma and its liver metastases indicates that SOD participate in adaptation of tumor cells to oxidative stress, and maintain certain level of ROS, necessary for appropriate cell proliferation. Expression of superoxide dismutase isoenzymes seems to be regulated not only at transcriptional level, but also posttranscriptional.


2010 ◽  
Vol 70 (21) ◽  
pp. 8417-8425 ◽  
Author(s):  
Emily Omori ◽  
Kunihiro Matsumoto ◽  
Songyun Zhu ◽  
Robert C. Smart ◽  
Jun Ninomiya-Tsuji

Sign in / Sign up

Export Citation Format

Share Document