Green and sustainable synthesis of poly(δ-valerolactone) with TBD catalyzed ring-opening polymerization reaction

Author(s):  
Kai Cheng ◽  
Shiyao Lu ◽  
Kai Wang ◽  
Guangsheng Luo

Ring-opening polymerization (ROP) of lactones catalyzed by 1,5,7-triazabicyclo[4,4,0]decane-5-ene (TBD) is a highly efficient method for synthesizing aliphatic polyester materials. In order to create a green and sustainable synthetic route of...

2021 ◽  
Vol 11 (4) ◽  
pp. 1561
Author(s):  
Gabrielle Foran ◽  
Nina Verdier ◽  
David Lepage ◽  
Arnaud Prébé ◽  
David Aymé-Perrot ◽  
...  

Solid polymer electrolytes have been widely proposed for use in all solid-state lithium batteries. Advantages of polymer electrolytes over liquid and ceramic electrolytes include their flexibility, tunability and easy processability. An additional benefit of using some types of polymers for electrolytes is that they can be processed without the use of solvents. An example of polymers that are compatible with solvent-free processing is epoxide-containing precursors that can form films via the lithium salt-catalyzed epoxide ring opening polymerization reaction. Many polymers with epoxide functional groups are liquid under ambient conditions and can be used to directly dissolve lithium salts, allowing the reaction to be performed in a single reaction vessel under mild conditions. The existence of a variety of epoxide-containing polymers opens the possibility for significant customization of the resultant films. This review discusses several varieties of epoxide-based polymer electrolytes (polyethylene, silicone-based, amine and plasticizer-containing) and to compare them based on their thermal and electrochemical properties.


2001 ◽  
Vol 20 (20) ◽  
pp. 4207-4210 ◽  
Author(s):  
Denise Barbier-Baudry ◽  
Sebastian Heiner ◽  
Marek M. Kubicki ◽  
Estelle Vigier ◽  
Marc Visseaux ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1979
Author(s):  
Francesca Cicogna ◽  
Guido Giachi ◽  
Luca Rosi ◽  
Elisa Passaglia ◽  
Serena Coiai ◽  
...  

End functionalized polylactides are prepared by ring opening polymerization of L-lactide in the presence of stannous octoate (Sn(Oct)2). Three chromophores, 9H-carbazol-ethanol (CA), 9-fluorenyl-methanol (FM), and 2-(4-(2-chloro-4-nitrophenylazo)-N-ethylphenylamino)ethanol (Disperse Red 13, DR), are for the first time used as co-initiators in the polymerization process. The polymerization reaction is initiated by conventional thermal treatment, but in the case of FM, microwave-assisted polymerization is also carried out. CA and FM absorb and emit in the UV portion of the electromagnetic spectrum, whereas DR absorbs in the visible part. The obtained end-capped polylactides derivatives show the same photophysical properties as the initiator, so they are “macromolecular dyes” (MDs) that can be used “as synthesized” or can be blended with commercial poly(lactic acid) (PLA). The blends of PLA with MDs have ultraviolet-visible (UV-Vis) absorption and fluorescence emission features similar to that of MDs and thermal properties typical of PLA. Finally, migration tests, carried out onto the blends of PLA with MDs and PLA with free chromophores, show that MDs are less released than free chromophores both in solution and in the solid phase.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 820
Author(s):  
Sami Fadlallah ◽  
Jashvini Jothieswaran ◽  
Iker Del Rosal ◽  
Laurent Maron ◽  
Fanny Bonnet ◽  
...  

The reactivity of rare-earth complexes RE(BH4)2(C3H5)(THF)x (RE = La, Nd, Sm, Y, Sc) toward the Ring-Opening Polymerization (ROP) of ε-caprolactone (ε-CL) was rationalized by Density Functional Theory (DFT) calculations. Even if the polymerization reaction can be initiated by both RE-(BH4) and RE-allyl bonds, experimental investigations have shown that the initiation via the borohydride ligand was favored, as no allyl group could be detected at the chain-end of the resulting polymers. DFT studies could confirm these observations, as it was highlighted that even if the activation barriers are both accessible, the allyl group is not active for the ROP of ε-CL due to the formation of a highly stable intermediate that disfavors the subsequent ring-opening.


RSC Advances ◽  
2018 ◽  
Vol 8 (63) ◽  
pp. 36025-36033 ◽  
Author(s):  
Hua Zhao ◽  
Lennox O. Afriyie ◽  
Nathaniel E. Larm ◽  
Gary A. Baker

New glycol-functionalized ionic liquids exhibit high thermal stability and are lipase-compatible, leading to a high molecular weight of polyester in the enzymatic ring-opening polymerization reaction.


Sign in / Sign up

Export Citation Format

Share Document