Layer-structured FeCo bihydroxide as an ultra-stable bifunctional electrocatalyst for water splitting at high current densities

Author(s):  
Chaoyang Sun ◽  
Hui Wang ◽  
Shan Ji ◽  
Xuyun Wang ◽  
Vladimir Linkov ◽  
...  

A layered FeCo double hydroxide bifunctional water cracking electrocatalyst with ultra-high stability at high current density was developed.

2020 ◽  
Vol 7 (19) ◽  
pp. 3627-3635 ◽  
Author(s):  
Rui Guo ◽  
Yan He ◽  
Renchao Wang ◽  
Junhua You ◽  
Hongji Lin ◽  
...  

It is increasingly important to develop an efficient OER catalyst that can provide high current density at low overpotentials to improve water splitting efficiency.


2013 ◽  
Vol 774-776 ◽  
pp. 795-798
Author(s):  
Ting Jin Zhou ◽  
Min Lu ◽  
Ri Yao Chen

Carboxymethyl cellulose (CMC)-polyvinyl alcohol (PVA) and chitosan (CS)-polyvinyl alcohol were cross-linked by Fe3+and glutaraldehyde respectively to prepare cation exchange layer and anion exchange layer, and polyvinyl alcohol-sodium alginate (SA)-metal octocarboxyphthalocyanine (MePc (COOH)8, a kind of water splitting catalyst, here, Me stands for Fe3+or Co2+) nanofibers were prepared by electrospinning technique and introduced into the interlayer to obtain the CMC-PVA/PVA-SA-MePc (COOH)8/CS-PVA bipolar membrane (BPM). The experimental results showed that compared with the BPM without the PVA-SA-MePc (COOH)8interlayer, the water splitting efficiency at the interlayer of the CMC-PVA/PVA-SA-MePc (COOH)8/ CS-PVA BPM was obviously increased, and its membrane impedance decreased. When the concentration of FePc (COOH)8in the PVA-SA-FePc (COOH)8nanofibers was 3.0%, the trans-membrane voltage drop (IRdrop) of the CMC-PVA/PVA-SA-FePc (COOH)8/CS-PVA BPM was as low as 0.6V at a high current density of 90 mA/cm2.


Author(s):  
Takashi Fujikawa ◽  
Yoshitoshi Ogura ◽  
Koki Ishigami ◽  
Yoshihiro Kawano ◽  
Miyuki Nagamine ◽  
...  

Abstract Geobacter sulfurreducens produces high current densities and it has been used as a model organism for extracellular electron transfer studies. Nine G. sulfurreducens strains were isolated from biofilms formed on an anode poised at –0.2 V (vs. SHE) in a bioelectrochemical system in which river sediment was used as an inoculum. The maximum current density of an isolate, strain YM18 (9.29 A/m2), was higher than that of the strains PCA (5.72 A/m2), the type strain of G. sulfurreducens, and comparable to strain KN400 (8.38 A/m2), which is another high current producing strain of G. sulfurreducens. Genomic comparison of strains PCA, KN400, and YM18 revealed that omcB, xapD, spc, and ompJ, which are known to be important genes for iron reduction and current production in PCA, were not present in YM18. In the PCA and KN400 genomes, two and one region (s) encoding CRISPR/Cas systems were identified, respectively, but they were missing in the YM18 genome. These results indicate that there is genetic variation in the key components involved in extracellular electron transfer among G. sulfurreducens strains.


Author(s):  
Xiulin Yang ◽  
Defei Liu ◽  
Shenghong Zhong ◽  
Xiaofeng Zhou ◽  
Kuo-Wei Huang ◽  
...  

Selective conversion of CO2 to formate with high current densities is highly desirable but still challenging. Copper hollow fibers with interconnected pore structures were fabricated via a facile method and used as a stand-alone cathode for highly efficient electrochemical reduction of CO2 to formate. Our studies revealed that delivering the reactant CO2 gas to the inner space of the hollow fiber could build up a higher CO2 partial pressure in the pores and presumably reduce the concentration of H[Formula: see text] from the electrolyte to effectively suppress the major competing reaction, hydrogen evolution reaction (HER), from 46.9% faradaic efficiency (FE) to 15.0%. A high selectivity for CO2 reduction to formate with a maximum FE of 77.1% was achieved with a high current density of 34.7[Formula: see text]mA cm[Formula: see text], which is one of the highest FEs on Cu-based materials. Mechanistic studies suggest that the abundant active sites along with the unique crystal facets induced by the high pressure of CO2 at the pore surface in the “gas in” mode are attributed to the superior electroactivity and selectivity for the CO2 reduction to formate. The Cu hollow fiber electrodes exhibit an outstanding long-term stability at high current density, showing great potential for large-scale practical applications.


Although the spectrum of the ordinary carbon arc has been studied in great detail during the last 70 years, there seems to have been no similar study of the “High Current Density” arc which was introduced by Beck in 1914. Spectrophotometrical measurements have been made in connection with the development of this type of arc for searchlights, and photographs of the spectra obtained from the total radiation from the arc have been published. The only account, however, of the spectrum from individual parts of the arc appears in a short note by Bell and Bassett. They examined an image of the arc on a ground glass screen with a direct vision spectroscope and reported that in the arc stream 15 lines appeared when the current exceeded 100 amperes. They attributed 7 of these to helium and 2 to hydrogen.


Sign in / Sign up

Export Citation Format

Share Document