Non-affinity adsorption of nanorods onto smooth walls with entropy driven mechanism

Soft Matter ◽  
2021 ◽  
Author(s):  
Yi-Ting Cheng ◽  
Heng-Kwong Tsao ◽  
Yu-Jane Sheng

Preferential adsorption of nanorods onto smooth walls is investigated by dissipative particle dynamics in the absence of specific attraction and depletant. Although the translational and rotational entropy of nanorods is...

2019 ◽  
Author(s):  
Ting Liu ◽  
Anupam Mishra ◽  
Mohsen Torabi ◽  
Ahmed A. Hemeda ◽  
James Palko ◽  
...  

2005 ◽  
Vol 42 (3) ◽  
pp. 180-183 ◽  
Author(s):  
S. G. Schulz ◽  
U. Frieske ◽  
H. Kuhn ◽  
G. Schmid ◽  
F. Müller ◽  
...  

2021 ◽  
Vol 33 (7) ◽  
pp. 072001
Author(s):  
Liuzhen Ren ◽  
Haibao Hu ◽  
Luyao Bao ◽  
Mengzhuo Zhang ◽  
Jun Wen ◽  
...  

2012 ◽  
Vol 45 (19) ◽  
pp. 8109-8116 ◽  
Author(s):  
Brandon L. Peters ◽  
Abelardo Ramírez-Hernández ◽  
Darin Q. Pike ◽  
Marcus Müller ◽  
Juan J. de Pablo

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramin Zakeri

AbstractOne of the unresolved issues in physiology is how exactly myosin moves in a filament as the smallest responsible organ for contracting of a natural muscle. In this research, inspired by nature, a model is presented consisting of DPD (dissipative particle dynamics) particles driven by electro-osmotic flow (EOF) in micro channel that a thin movable impermeable polymer membrane has been attached across channel width, thus momentum of fluid can directly transfer to myosin stem. At the first, by validation of electro-osmotic flow in micro channel in different conditions with accuracy of less than 10 percentage error compared to analytical results, the DPD results have been developed to displacement of an impermeable polymer membrane in EOF. It has been shown that by the presence of electric field of 250 V/m and Zeta potential − 25 mV and the dimensionless ratio of the channel width to the thickness of the electric double layer or kH = 8, about 15% displacement in 8 s time will be obtained compared to channel width. The influential parameters on the displacement of the polymer membrane from DPD particles in EOF such as changes in electric field, ion concentration, zeta potential effect, polymer material and the amount of membrane elasticity have been investigated which in each cases, the radius of gyration and auto correlation velocity of different polymer membrane cases have been compared together. This simulation method in addition of probably helping understand natural myosin displacement mechanism, can be extended to design the contraction of an artificial muscle tissue close to nature.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1516
Author(s):  
Dongmei Liu ◽  
Kai Gong ◽  
Ye Lin ◽  
Tao Liu ◽  
Yu Liu ◽  
...  

We investigated the interfacial properties of symmetric ternary An/AmBm/Bn and An/Am/2BmAm/2/Bn polymeric blends by means of dissipative particle dynamics (DPD) simulations. We systematically analyzed the effects of composition, chain length, and concentration of the copolymers on the interfacial tensions, interfacial widths, and the structures of each polymer component in the blends. Our simulations show that: (i) the efficiency of the copolymers in reducing the interfacial tension is highly dependent on their compositions. The triblock copolymers are more effective in reducing the interfacial tension compared to that of the diblock copolymers at the same chain length and concentration; (ii) the interfacial tension of the blends increases with increases in the triblock copolymer chain length, which indicates that the triblock copolymers with a shorter chain length exhibit a better performance as the compatibilizers compared to that of their counterparts with longer chain lengths; and (iii) elevating the triblock copolymer concentration can promote copolymer enrichment at the center of the interface, which enlarges the width of the phase interfaces and reduces the interfacial tension. These findings illustrate the correlations between the efficiency of copolymer compatibilizers and their detailed molecular parameters.


Sign in / Sign up

Export Citation Format

Share Document