Fe ultra-small particles anchored on carbon aerogels to enhance the oxygen reduction reaction in Zn-air batteries

Author(s):  
Jinjin Shi ◽  
Xinxin Shu ◽  
Chensheng Xiang ◽  
Hong Li ◽  
Yang Li ◽  
...  

The Fe–N4–O–Fe–N4 moiety as active sites in ultra-small Fe particles anchored on carbon aerogel exhibited superior performance towards the oxygen reduction reaction.

2019 ◽  
Vol 7 (36) ◽  
pp. 20840-20846 ◽  
Author(s):  
Ting He ◽  
Yaqian Zhang ◽  
Yang Chen ◽  
Zhenzhu Zhang ◽  
Haiyan Wang ◽  
...  

Biomass-derived carbon aerogel with hierarchical porosity and FeN4 single atom sites outperforms platinum towards the oxygen reduction reaction in alkaline media and can be used as the cathode catalyst for aluminium–air batteries.


2019 ◽  
Vol 7 (44) ◽  
pp. 25557-25566 ◽  
Author(s):  
Min Hong ◽  
Jianhang Nie ◽  
Xiaohua Zhang ◽  
Pengfei Zhang ◽  
Qin Meng ◽  
...  

FeNx atom clusters anchored on N-enriched graphene carbon aerogel exhibited high mass specific activity (840 mA mgFe−1 at 0.80 V), positive E1/2 (0.90 V vs. RHE), excellent durability and strong tolerance to methanol and SCN− in alkaline media.


2021 ◽  
Author(s):  
Dongsheng Xia ◽  
Chenchen Yu ◽  
Yinghao Zhao ◽  
Yinping Wei ◽  
Haiyan Wu ◽  
...  

The severe degradation of Fe-N-C electrocatalysts during long-term oxygen reduction reaction (ORR) has become a major obstacle for application in proton-exchange membrane fuel cells. Understanding the degradation mechanism and regeneration...


2020 ◽  
Vol 9 (1) ◽  
pp. 843-852
Author(s):  
Hunan Jiang ◽  
Jinyang Li ◽  
Mengni Liang ◽  
Hanpeng Deng ◽  
Zuowan Zhou

AbstractAlthough Fe–N/C catalysts have received increasing attention in recent years for oxygen reduction reaction (ORR), it is still challenging to precisely control the active sites during the preparation. Herein, we report FexN@RGO catalysts with the size of 2–6 nm derived from the pyrolysis of graphene oxide and 1,1′-diacetylferrocene as C and Fe precursors under the NH3/Ar atmosphere as N source. The 1,1′-diacetylferrocene transforms to Fe3O4 at 600°C and transforms to Fe3N and Fe2N at 700°C and 800°C, respectively. The as-prepared FexN@RGO catalysts exhibited superior electrocatalytic activities in acidic and alkaline media compared with the commercial 10% Pt/C, in terms of electrochemical surface area, onset potential, half-wave potential, number of electrons transferred, kinetic current density, and exchange current density. In addition, the stability of FGN-8 also outperformed commercial 10% Pt/C after 10000 cycles, which demonstrates the as-prepared FexN@RGO as durable and active ORR catalysts in acidic media.


Sign in / Sign up

Export Citation Format

Share Document