In-situ growth of MOF derived ultrafine molybdenum carbides nanoparticles supported on Ni foam as efficient hydrogen evolution electrocatalysts

Author(s):  
Yanlong Lv ◽  
Jian Ru Gong

The design of a universal synthesize strategy of long-term durable transition metal carbides catalysts with controllable nanostructure and sufficient active sites for hydrogen evolution reaction is challenging. Herein, the in-situ...

2017 ◽  
Vol 4 (3) ◽  
pp. 594-600 ◽  
Author(s):  
Jing Yu ◽  
Fei-Xiang Ma ◽  
Yue Du ◽  
Pan-Pan Wang ◽  
Cheng-Yan Xu ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Saishuai Bai ◽  
Meiqing Yang ◽  
Jizhou Jiang ◽  
Xiaomiao He ◽  
Jing Zou ◽  
...  

AbstractMXenes, an emerging two-dimensional (2D) transition metal carbides, nitrides and carbonitrides, have exhibited great potential as electrocatalysts for hydrogen evolution reaction (HER) due to the excellent characters, including excellent structural and chemical stability, superior electrical conductivity, and large active surface area. In this comprehensive study, firstly, the preparation advances of MXenes are systematically summarized. Then, the representative applications of MXenes-based HER electrocatalysts are introduced, from experimental and theoretical aspects. Thirdly, the strategies for improving HER catalytic activity of MXenes are demonstrated, such as optimizing active sites by termination modification and metal-atom doping, increasing active sites by fabricating various nanostructures. Finally, the existing challenges and new opportunities for MXenes-based electrocatalysts are also elucidated. This paper provides reference for the future development of new and efficient MXenes-based electrocatalysts for hydrogen production through water-splitting technology.


2020 ◽  
Author(s):  
Hong Liu ◽  
Jian-Jun Wang ◽  
Li-Wen Jiang ◽  
Yuan Huang ◽  
Bing Bing Chen ◽  
...  

<p>Hydrogen production via alkaline water electrolysis is of significant interest. However, the additional water dissociation step makes the Volmer step a relatively more sluggish kinetics and consequently leads to a slower reaction rate than that in acidic solution. Herein, we demonstrate an effective strategy that Co(OH)<sub>2</sub> can promote the Volmer process by accelerating water dissociation and enhance the electrocatalytic performance of CoP toward alkaline hydrogen evolution reaction. The Co(OH)<sub>2</sub> nanoplates are electrochemically induced in-situ generated to form a nanotree-like structure with porous CoP nanowires, endowing the hybrid electrocatalyst with superior charge transportation, more exposed active sites, and enhanced reaction kinetics. This strategy may be extended to <a></a><a>other phosphides and chalcogenides </a>and provide insight into the design and fabrication of efficient alkaline HER catalysts.</p>


2020 ◽  
Author(s):  
Hong Liu ◽  
Jian-Jun Wang ◽  
Li-Wen Jiang ◽  
Yuan Huang ◽  
Bing Bing Chen ◽  
...  

<p>Hydrogen production via alkaline water electrolysis is of significant interest. However, the additional water dissociation step makes the Volmer step a relatively more sluggish kinetics and consequently leads to a slower reaction rate than that in acidic solution. Herein, we demonstrate an effective strategy that Co(OH)<sub>2</sub> can promote the Volmer process by accelerating water dissociation and enhance the electrocatalytic performance of CoP toward alkaline hydrogen evolution reaction. The Co(OH)<sub>2</sub> nanoplates are electrochemically induced in-situ generated to form a nanotree-like structure with porous CoP nanowires, endowing the hybrid electrocatalyst with superior charge transportation, more exposed active sites, and enhanced reaction kinetics. This strategy may be extended to <a></a><a>other phosphides and chalcogenides </a>and provide insight into the design and fabrication of efficient alkaline HER catalysts.</p>


2021 ◽  
Author(s):  
Nawras Abidi ◽  
Audrey Bonduelle-Skrzypczak ◽  
Stephan Steinmann

MoS<sub>2</sub>, have emerged as a promising class of electrocatalysts for the production of H<sub>2</sub> via the hydrogen evolution reaction (HER) in acidic conditions.<div>The edges of MoS<sub>2</sub> are known for their HER activity, but their precise atomistic nature and stability under HER conditions is not yet known. In contrast to other typical uses of MoS<sub>2</sub> as a catalyst, under HER there is no external source of sulfur. Therefore, the sulfidation of the edges can only decrease under operating conditions and the thermodynamics of the process are somewhat ill-defined. Our results suggest that the 50%S S-edge may be active for HER via the Volmer-Tafel mechanism and is, despite a high H coverage, stable with respect to H<sub>2</sub>S release. </div><div>At the 50%S Mo-edge, the adsorbed hydrogen opens the way for H<sub>2</sub>S release, leading to the 0%S Mo-edge, which was previously investigated and found to be HER active. HER being a water-based process, we also considered the effect of the presence of H<sub>2</sub>O and the in-situ formation of OH. For the 50%S Mo-edge, H<sub>2</sub>O is only very weakly adsorbed and OH formation is unfavorable. Nevertheless, OH assists the loss of sulfur coverage, leading to OH-based HER active sites. In contrast, OH is strongly adsorbed on the 50%S S-edge. By explicitly considering the electrochemical potential using grand-canonical density functional theory, we unveil that the Volmer-Heyrovsky mechanism on sulfur sites is still accessible in the presence of surface OH at the 50%S S-edge. However, the 50%S S-edge is found to be mildly unstable with respect to H<sub>2</sub>S in the presence of water/OH. Hence, we suggest that the 50%S S-edge evolves over time towards a 0%S S-edge, covered by surface OH that will block permanently the active sites. </div>


2019 ◽  
Vol 12 (04) ◽  
pp. 1950044 ◽  
Author(s):  
Wen Li ◽  
Xiaopeng Qi ◽  
Hui Yang ◽  
Honghui Jiang ◽  
Tongxiang Liang

Carbonized melamine foam (CM) was used as an ideal framework for the in-situ growth of MoS2 by hydrothermal method. And its hydrogen evolution reaction (HER) and the catalytic mechanism were explored. By regulating the concentration of the precursor, the stacking pattern of MoS2 lamella on CM was optimized. And the results show that the sample with a precursor concentration of [Formula: see text][Formula: see text]M possesses the smallest overpotential (218[Formula: see text]mV @ 10[Formula: see text]mA[Formula: see text]cm[Formula: see text]) and its vertical arrayed nanosheets encased on the surface of carbon matrix provide more sites for the absorption of H[Formula: see text] in the electrolyte which accounts for the promotion of hydrogen generation.


Sign in / Sign up

Export Citation Format

Share Document