Innovative salt-blocking technologies of photothermal materials in solar-driven interfacial desalination

Author(s):  
Fahad Nawaz ◽  
Yawei Yang ◽  
Shihan Zhao ◽  
Minhao Sheng ◽  
Cheng Pan ◽  
...  

In recent decades, a rapid development of solar water evaporation has been ushered, which focus on low-cost and energy water desalination. For this purpose, different photothermal materials have been introduced...

2020 ◽  
Vol 8 (26) ◽  
pp. 13311-13319 ◽  
Author(s):  
Ranran Cui ◽  
Jilei Wei ◽  
Cui Du ◽  
Shasha Sun ◽  
Chen Zhou ◽  
...  

The as-prepared AuNPs@silica/FFP (GSP) membrane displays strong and reusable performance for highly efficient water desalination and decontamination.


2019 ◽  
Vol 19 (7) ◽  
pp. 2001-2008
Author(s):  
Peng Ren ◽  
Xiuchun Yang

Abstract The desalination and purification of sea or brackish water by utilizing solar energy are considered to be the most feasible solutions to overcome the problems of water shortage and pollution. In this study, a bifunctional Cu2-xSe-decorated hierarchical TiO2 nanotube mesh (CTNM) was designed and synthesized successfully for both solar water evaporation and photodegradation. Cu2-xSe enhances solar light absorption and solar water evaporation performance as a low-cost absorber because of its localized surface plasmon resonance (LSPR) effect. Meanwhile, the formation of the p-Cu2-xSe/n-TiO2 heterojunction improves the photodegradation performance by increasing separation and transport of photogenerated charge carriers. Hence, CTNM has a relatively high solar water evaporation conversion efficiency of 83.06% and also can photodegrade 95% of methyl orange after 3 h under 2.5 kW m−2 simulated solar irradiation, which demonstrate the extremely high utilization ratio of solar energy of CTNM.


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 773
Author(s):  
Federico A. Leon ◽  
Alejandro Ramos-Martin ◽  
David Santana

The desalination of seawater is one of the most established techniques in the world. In the middle of the 20th century this was achieved using water evaporation systems, later with reverse osmosis membranes and nowadays with the possibility of capacitive deionization membranes. Capacitive deionization and membrane capacitive deionization are an emerging technology that make it possible to obtain drinking water with an efficiency of 95%. This technology is in the development stage and consists of porous activated carbon electrodes, which have great potential for saving energy in the water desalination process and can be used for desalination using an innovative technology called capacitive deionization (CDI), or membrane capacitive deionization (MCDI) if an anion and cation membrane exchange is used. In this paper is proposed and designed a characterization system prototype for CDI and MCDI that can operate with constant current charging and discharging (galvanostatic method). Adequate precision has been achieved, as can be seen in the results obtained. These results were obtained from the performance of typical characterization tests with electrochemical double layer capacitors (EDLC), since they are electrochemical devices that behave similarly to MCDI, from the point of view of the electrical variables of the processes that take place in MCDI. A philosophy of using free software with open-source code has been followed, with software such as the Arduino and Processing programming editors (IDE), as well as the Arduino Nano board (ATmega328), the analogical-digital converter (ADC1115) and the digital-analogical converter (MCP4725). Moreover, a low-cost system has been developed. A robust and versatile system has been designed for water treatment, and a flexible system has been obtained for the specifications established, as it is shown in the results section.


2018 ◽  
Vol 11 (8) ◽  
pp. 1985-1992 ◽  
Author(s):  
Xingyi Zhou ◽  
Fei Zhao ◽  
Youhong Guo ◽  
Yi Zhang ◽  
Guihua Yu

Efficient solar water evaporation was achieved by antifouling hybrid hydrogels with capillarity facilitated water transport and heat concentration in a polymeric network.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Thanh-Lieu Thi Le ◽  
Lam Tan Nguyen ◽  
Hoai-Hue Nguyen ◽  
Nguyen Van Nghia ◽  
Nguyen Minh Vuong ◽  
...  

Nanostructures of titanium nitride (TiN) have recently been considered as a new class of plasmonic materials that have been utilized in many solar energy applications. This work presents the synthesis of a novel nanostructure of TiN that has a nanodonut shape from natural ilmenite ore using a low-cost and bulk method. The TiN nanodonuts exhibit strong and spectrally broad localized surface plasmon resonance absorption in the visible region centered at 560 nm, which is well suited for thermoplasmonic applications as a nanoscale heat source. The heat generation is investigated by water evaporation experiments under simulated solar light, demonstrating excellent solar light harvesting performance of the nanodonut structure.


Author(s):  
Cheng Tian ◽  
Chengcheng Li ◽  
Delun Chen ◽  
Yifan Li ◽  
LEI XING ◽  
...  

Designing low-cost and efficient evaporation system to maximize solar energy utilization is of great importance for the emerging solar water purification technologies. Herein, we demonstrate a universal sandwich hydrogel by...


2021 ◽  
Vol 11 (15) ◽  
pp. 6831
Author(s):  
Yue Chen ◽  
Jian Lu

With the rapid development of road traffic, real-time vehicle counting is very important in the construction of intelligent transportation systems (ITSs). Compared with traditional technologies, the video-based method for vehicle counting shows great importance and huge advantages in its low cost, high efficiency, and flexibility. However, many methods find difficulty in balancing the accuracy and complexity of the algorithm. For example, compared with traditional and simple methods, deep learning methods may achieve higher precision, but they also greatly increase the complexity of the algorithm. In addition to that, most of the methods only work under one mode of color, which is a waste of available information. Considering the above, a multi-loop vehicle-counting method under gray mode and RGB mode was proposed in this paper. Under gray and RGB modes, the moving vehicle can be detected more completely; with the help of multiple loops, vehicle counting could better deal with different influencing factors, such as driving behavior, traffic environment, shooting angle, etc. The experimental results show that the proposed method is able to count vehicles with more than 98.5% accuracy while dealing with different road scenes.


2021 ◽  
pp. 2101036
Author(s):  
Hengyi Lu ◽  
Wen Shi ◽  
Fei Zhao ◽  
Wenjing Zhang ◽  
Peixin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document