Emerging Washable Textronics for Imminent E-Waste Mitigation: Strategies, Reliability, and Perspective

Author(s):  
Md Luthfar Rahman Liman ◽  
M. Tauhidul Islam

The desire for close human contact with electronic components for portable sensing, energy harvesting, and healthcare has sparked massive advances in wearable textile electronic (textronic) technology. Hierarchical textile assemblies (yarn/fibers,...

Author(s):  
Marcela de Melo Anice´zio ◽  
Alper Erturk ◽  
Carlos De Marqui Junior ◽  
Daniel J. Inman

Transforming aeroelastic vibrations into electricity for low-power generation has received growing attention over the past couple of years. The goal is to convert wind energy into electricity for powering small electronic components employed in wireless applications such as structural health monitoring. The potential applications of interest for aeroelastic energy harvesting range from lifting components in aircraft structures to several other engineering problems involving wireless electronic components located in high wind areas. This paper investigates linear and nonlinear aeroelastic energy harvesting using electromagnetic induction. A two-dimensional airfoil with plunge and pitch degrees of freedom (DOF) is considered. The electromagnetic induction is introduced to the plunge DOF by means of a coil-magnet combination and the nonlinearities are introduced through the pitch DOF. The governing dimensionless aeroelastic equations are given with electromagnetic coupling and a resistive load in the electrical domain. The effects of several dimensionless system parameters (electromechanical coupling, load resistance, and coil inductance) on the dimensionless electrical power as well as the dimensionless linear flutter speed are investigated. After considering the linear problem, combined nonlinearities are investigated to improve the electrical output. A cubic stiffness of the hardening type is combined with the free play nonlinearity to make the resulting nonlinear oscillations bounded with acceptable amplitude over a wide range of airflow speeds. The results and the dimensionless simulations presented in this work can be employed for designing and optimizing scalable aeroelastic energy harvesters for wind energy harvesting using electromagnetic induction.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


2012 ◽  
Vol 2 (5) ◽  
pp. 252-255
Author(s):  
Rudresha K J Rudresha K J ◽  
◽  
Girisha G K Girisha G K

Sign in / Sign up

Export Citation Format

Share Document