mine hoist
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 35)

H-INDEX

7
(FIVE YEARS 2)

Author(s):  
Song Ziyu ◽  
Wang Xiaona ◽  
Li Yajing ◽  
Guo Yu ◽  
Hao Huimin ◽  
...  

The hoist is an important equipment in the mine pit. Since the containers are lifted or lowered with flexible steel wire ropes, there are shocks and vibrations during operation, especially in the emergency braking stage, the shocks and vibration will be more severe. Mine hoist is a complex system; therefore, it is difficult to obtain all its dynamics information only by investigating the flexible hoisting subsystem or hydraulic brake subsystem. Therefore, it is very necessary to establish an accurate model to predict these characteristics of the hoist, this will provide useful tools for hoist design and maintenance. Therefore, a joint modeling methodology is proposed and implemented in this paper. A hoisting system model considering the non-linear factors such as contact characteristics and flexibility was established in RecurDyn. The hydraulic braking system model and control system model were established in AMESim, and the co-simulation model was constructed by the interface module. In this co-simulation model, not only the flexible hoisting subsystem and hydraulic brake subsystem are included, but also the coupling effect of subsystems is considered. Finally, taking the lifting condition as an example, execute emergency braking research on the hoisting system under experiment, mathematical model, and co-simulation model, respectively. Comparing the co-simulation model with the mathematical dynamics model, and the experimental test results, research indicates that the joint simulation model of coupled hoisting system and hydraulic braking system can effectively reflect the dynamic characteristics of the actual hoisting system. It provides an effective tool for hoist design, optimization, performance analysis, and operating condition simulation. In addition, the methods and techniques used in the co-simulation modeling procedure are portable. Therefore, the paper is of significance for the mine hoist.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5821
Author(s):  
Yewei Zhang ◽  
Qing Zhang ◽  
Yuxing Peng ◽  
Chen Wang ◽  
Xiangdong Chang ◽  
...  

In view of the serious friction and wear on the surface of a hoisting wire rope caused by the failure of lubrication under severe hoisting conditions, a study on the tribological characteristics of lanthanum stearate modified lubricating oil (LSMLO) was carried out. First, lanthanum stearate was prepared by the saponification reaction, and its surface morphology, chemical structure, thermal stability, and dispersion stability in IRIS-550A lubricating oil (IRIS) for wire rope were analyzed. Then, the tribological properties of LSMLO were investigated through four-ball friction tests and sliding wear tests of wire ropes. The results show that stearic acid almost completely reacts to produce lanthanum stearate, which has good thermal stability and a disordered layered structure. With the help of oleic acid, the dispersion stability of lanthanum stearate in IRIS can be significantly improved. The four-ball friction tests show that the optimal addition amount of lanthanum stearate in IRIS is 0.2 wt.%, and the CoF and wear scar diameter are reduced by about 35% and 25% respectively when lubricated with LSMLO compared to that with IRIS. LSMLO can better reduce the wear of the wire rope under different sliding speeds and contact loads than IRIS, and it exhibits improved anti-friction and anti-wear properties under high speed and low load.


2021 ◽  
Author(s):  
Fangyuan Yan ◽  
Juanli Li ◽  
Dong Miao ◽  
Qi Cao

Abstract A reliable braking system is an important guarantee for safe operation of mine hoist. In order to make full use of the monitoring data in the operation process of mine hoist, identify the operation status of the hoist, and further carry out fault diagnosis on it, the deep learning method was introduced into the fault diagnosis of the hoist, and a fault diagnosis method of hoist braking system based on convolution neural network has been proposed. Firstly, the working principle and fault mechanism of disc brake and its hydraulic station in hoist braking system are analyzed, and the monitoring parameters of this study are determined; then, based on massive monitoring data, the convolutional neural networks (CNN) is established, the one-dimensional signal collected by the sensor is transformed into two-dimensional image for coding, the neural network is trained by gradient descent method, and the network structure parameters are modified according to the training results. Finally, the fault diagnosis model is compared and verified by using the sample set based on the traditional back propagation neural network (BP) and CNN. The results show that the accuracy of CNN is higher than that of BP, and the accuracy rate can reach 99.375% after reducing the involvement between samples. This method can make full use of the monitoring data for diagnosis, without subjective intervention of experts, and improve the accuracy of diagnosis.


2021 ◽  
Vol 11 (14) ◽  
pp. 6441
Author(s):  
Dagang Wang ◽  
Ruixin Wang ◽  
Bo Wang ◽  
Magd Abdel Wahab

The effects of vibration on the emergency braking tribological behaviors of the brake shoe of a deep coal mine hoist were investigated in this study. The thermal, frictional and mechanical parameters of the brake shoe were obtained. The vibration characteristics of the brake shoe during emergency braking were investigated, employing multibody dynamics analysis. The effect of vibration on the emergency braking tribological behaviors (temperature and stress distributions) of brake interfaces was explored using the finite element method. The self-made tribo-brake test rig of a brake shoe was employed to reveal the friction deterioration behaviors of the brake shoe during emergency braking. The results show obvious vibrations of all brake shoes along the direction of positive braking pressure during emergency braking. The vibration causes increases in the equivalent Von Mises stress and temperature at the contact interfaces between the brake disc and the brake shoe as compared to the case of ignoring the vibration. Along the rotation direction of the brake disc, the equivalent stress and temperature of the brake disc surface present three overall rapid increases, as well as two slight decreases during emergency braking. As compared to cyclic emergency braking, continuous emergency braking exhibits more obvious tribological degradation of the brake shoe, attributed to enhanced vibration. The wear loss of the brake shoe increases with increasing emergency braking cycles and continuous emergency braking time.


2021 ◽  
Author(s):  
Jie Zhang ◽  
Ke Yang ◽  
Yuanyuan Jiang ◽  
Ling Xia

Abstract In view of the complex environment and frequent faults in the actual operation of mine hoist, a fault diagnosis method based on Convolution Attention Autoencoder (CAAE) is proposed through theoretical analysis and experimental verification to improve the diagnostic stability of mine hoist under strong noise. First, a CAAE is constructed, which uses a combination of a convolutional neural network (CNN) and a channel attention module (CAM) to compress and encode the input signal, and then the input signal is reconstructed by a decoder to train the CAAE to extract the original signal fault features. Then, a fault diagnosis classifier is constructed to classify different fault patterns. Finally, experimental validation is performed with the Case Western Reserve University bearing dataset. The results show that the method has a strong feature extraction capability and a high classification accuracy for bearing failure modes compared with existing methods. And the experiments on the application effect of the proposed method in noisy environment are conducted to verify that the method is highly effective and challenging.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110330
Author(s):  
Ganggang Wu ◽  
Xingming Xiao ◽  
Chi Ma ◽  
Yuqiang Jiang

At present, there is no appropriate way to measure the transverse vibration response of moving hoisting vertical rope in hoist. Therefore, a vision-based measurement method combining the digital image correlation (DIC) and digital image processing (DIP) algorithms is proposed in this paper. In this method, a reference line perpendicular to the vertical ropes is added in image sequence by DIP algorithm to form some virtual cross targets, which makes the improved DIC algorithm with adaptive template updating (ATU) rule can track the moving hoisting vertical rope without any labels. Then for distinguishing all ropes in the measuring area, a displacement threshold is set to locate the current measured rope and exclude the other ropes. The transverse vibration displacements of the hoisting vertical rope in an actual mine hoist was measured in three background situations, verifying the feasibility of the proposed method. Moreover, in a laboratory artificial vibration test, the measurement results from the proposed vision method and a laser displacement sensor yielded a very good agreement. The two experimental results indicate that it is fairly reasonable and effective to measure the transverse vibration displacements of hoisting vertical ropes.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xiuzhi Liu ◽  
Tao Sui

This paper presents a kind of intelligence control algorithm for the mine hoist control system. Firstly, the desired output of the system is described by a speed curve of hoisting process. Then, the structure diagram of the hoist system is constructed, and the expert PID controller is designed based on the model of this control system; the expert knowledge base was established according to the analysis of characteristics in different periods of the hoist process. Finally, the control effect was verified by SIMULINK simulation; by comparing with the result of conventional PID control, expert PID control is improved more safe and suitable for the mine hoist control system.


2021 ◽  
Vol 13 (5) ◽  
pp. 2874
Author(s):  
Florin Dumitru Popescu ◽  
Sorin Mihai Radu ◽  
Andrei Andraș ◽  
Ildiko Brînaș

The sustainable exploitation of raw materials, with improved safety and increased productivity, is closely linked to the development of mechanical mining installations. Mine hoists are designed for the transport of material, equipment and personnel between the mine surface and the underground. The mine hoist braking system is of paramount importance in its safe operation. Thus, for both drum and disc brake systems, the temperature of the friction surfaces is important for ensuring efficient braking, as exceeding the temperature threshold causes a decrease in the braking capacity. In this paper we present a numerical calculation model for the temperature of the braking disc of a mine hoist in the case of emergency braking. A real-scale model was built, based on the cable drive wheel and disc brake system of a hoisting machine used in Romania. Real material characteristics were imposed for the brake discs, the cable drive wheel and the brake pads. The simulation was performed for decelerations of 3, 3.5, 4 and 4.5 m/s2. The analysis shows that regardless of the acceleration and time simulated, the disc temperature reaches its maximum after 1.35 s of emergency braking. This value does not exceed the 327 °C limit where, according to previous studies, the braking power starts to fade. It means that the emergency braking is safe for the acceleration and masses under consideration, in the case of the studied mine hoist.


Sign in / Sign up

Export Citation Format

Share Document