Zwitterion-Functionalized Hollow Mesoporous Prussian Blue Nanoparticles for Targeted and Synergetic Chemo-Photothermal Treatment of Acute Myeloid Leukemia

Author(s):  
Huiyuan Bai ◽  
Quanhao Sun ◽  
Fei Kong ◽  
Hai-Jiao Dong ◽  
Ming Ma ◽  
...  

Multifunctional drug delivery systems combining two or more therapies have broad prospects for high efficacy tumor treatment. Herein, we designed a novel hollow mesoporous Prussian blue nanoparticles (HMPBs)-based platform for...

2017 ◽  
Vol 13 (5) ◽  
pp. 500-512 ◽  
Author(s):  
Kheireddine El-Boubbou ◽  
Daniel Azar ◽  
Amira Bekdash ◽  
Ralph J. Abi-Habib

2021 ◽  
Vol 405 ◽  
pp. 126891
Author(s):  
Huiyuan Bai ◽  
Tao Wang ◽  
Fei Kong ◽  
Meichen Zhang ◽  
Zhuoxuan Li ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (1) ◽  
pp. 248-255 ◽  
Author(s):  
Huajian Chen ◽  
Yan Ma ◽  
Xianwen Wang ◽  
Xiaoyi Wu ◽  
Zhengbao Zha

Multifunctional PEGylated PB-DOX NPs with a lipid-PEG shell were developed as a gram-scale manner and used as novel pH-responsive drug delivery vehicles for combined photothermal-chemo treatment of cancer cells with high efficacy.


2008 ◽  
Vol 5 (6) ◽  
pp. 653-663 ◽  
Author(s):  
Johannes Kohlschütter ◽  
Stefan Michelfelder ◽  
Martin Trepel

Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2103 ◽  
Author(s):  
Noureldien H. E. Darwish ◽  
Thangirala Sudha ◽  
Kavitha Godugu ◽  
Dhruba J. Bharali ◽  
Osama Elbaz ◽  
...  

The targeted nano-encapsulation of anticancer drugs can improve drug delivery and the selective targeting of cancer cells. Nuclear factor kappa B (NF-kB) is a regulator for different biological responses, including cell proliferation and differentiation. In acute myeloid leukemia (AML), constitutive NF-κB has been detected in more than 50% of cases, enabling leukemic cells to resist apoptosis and stimulate uncontrolled proliferation. We evaluated NF-kB expression in bone marrow samples from 103 patients with AML using quantitative real time polymerase chain reaction (RT-PCR) and found that expression was increased in 80.5% (83 out 103) of these patients with AML in comparison to the control group. Furthermore, overexpressed transmembrane glycoprotein (CD44) on leukemic cells in comparison to normal cells is known to play an important role in leukemic cell engraftment and survival. We designed poly lactide co-glycolide (PLGA) nanoparticles conjugated with antiCD44 and encapsulating parthenolide (PTL), a nuclear factor kappa B (NF-kB) inhibitor, in order to improve the selectivity and targeting of leukemic cells and to spare normal cells. In vitro, in leukemic cell lines Kasumi-1, KG-1a, and THP-1, proliferation was decreased by 40% (** p < 0.01) with 5 µM PLGA-antiCD44-PTL nanoparticles in comparison to the same concentration of free PTL (~10%). The higher uptake of the nanoparticles by leukemic cells was confirmed with confocal microscopy. In conclusion, PLGA-antiCD44-PTL nanoparticles improved the bioavailability and selective targeting of leukemic cells, thus holding promise as a drug delivery system to improve the cure rate of AML.


Sign in / Sign up

Export Citation Format

Share Document