prussian blue nanoparticles
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 86)

H-INDEX

39
(FIVE YEARS 8)

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Quan Tao ◽  
Genghan He ◽  
Sheng Ye ◽  
Di Zhang ◽  
Zhide Zhang ◽  
...  

Abstract Background Combining the multimodal imaging and synergistic treatment in one platform can enhance the therapeutic efficacy and diagnosis accuracy. Results In this contribution, innovative Mn-doped Prussian blue nanoparticles (MnPB NPs) were prepared via microemulsion method. MnPB NPs demonstrated excellent T1 and T2 weighted magnetic resonance imaging (MRI) enhancement in vitro and in vivo. The robust absorbance in the near infrared range of MnPB NPs provides high antitumor efficacy for photothermal therapy (PTT) and photoacoustics imaging property. Moreover, with the doping of Mn, MnPB NPs exhibited excellent Fenton reaction activity for chemodynamic therapy (CDT). The favorable trimodal imaging and Fenton reaction enhanced mild temperature photothermal therapy in vitro and in vivo were further confirmed that MnPB NPs have significant positive effectiveness for integration of diagnosis and treatment tumor. Conclusions Overall, this Mn doped Prussian blue nanoplatform with multimodal imaging and chemodynamic/mild temperature photothermal co-therapy provides a reliable tool for tumor treatment. Graphical Abstract


2022 ◽  
Author(s):  
Ansuja Pulickal Mathew ◽  
Santhosh Kalash Rajendrakumar ◽  
Adityanarayan Mohapatra ◽  
Arathy Vasukutty ◽  
Vishnu Revuri ◽  
...  

Excessive inflammatory response during sepsis causes irreversible damage to healthy tissues and results in multi-organ failure. During infection, bacterial endotoxin-triggered inflammatory responses in macrophages facilitate the recruitment of circulating leukocytes,...


2021 ◽  
pp. 131907
Author(s):  
Cai-Xia Liao ◽  
Bao-Zhu Jia ◽  
Hong Wang ◽  
Yuan-Ming Sun ◽  
Xiao-Yan Xu ◽  
...  

2021 ◽  
Vol 17 (12) ◽  
pp. 2374-2381
Author(s):  
Haitao Miao ◽  
Xiaoxiao Zhu ◽  
Fei Yuan ◽  
Qing Su ◽  
Pei Li ◽  
...  

Lung cancer, as one of the most fatal cancers around the world, is responsible for the death of millions every year. Among various types of lung cancers, the ones overexpressing CD44 is usually associated higher cell proliferation with poorer prognosis. Therefore, finding a way to effectively treat CD44 positive lung cancer is urgently needed. Here in this study, negatively charged ultrasmall prussian blue nanoparticles (UPBNPs) was firstly synthesized and adsorbed to polyethyleneimine (PEI) together with glucose oxidase (Gox). Afterwards, the PEI was further complexed with hyaluronic acid (HA) to give a cascade reaction platform (HP/UPB-Gox) for CD44 positive lung cancer therapy. The HP/UPB-Gox with HA shell was able to positively target CD44 overexpressed A549 cells. Upon arriving at the tumor tissue, the Gox catalyzed the glucose of tumor to create H2O2, which further served as the substrate of UPBNPs, a peroxidase mimic, to finally give highly toxic hydroxyl radical (OH) for cancer therapy. Therefore, the cascade reaction formed between UPBNPs and Gox was expected to realize effective treatment on CD44 overexpressed lung cancer.


Author(s):  
Qinglan Zhang ◽  
Xinyi Zou ◽  
Guihua Zhang ◽  
Ling Yu ◽  
Wei Huang ◽  
...  

2021 ◽  
Author(s):  
wei Wang ◽  
Ben Niu ◽  
Wenxuan Jiang ◽  
Mengqi Lv ◽  
Sa Wang

Abstract Based on the dependence of the light scattering intensity of single Prussian blue nanoparticles (PBNPs) on their oxidation state during sinusoidal potential modulation at varying frequencies, we present an electro-optical microscopic imaging approach to optically acquire the Faradaic electrochemical impedance spectroscopy (oEIS) of single PBNPs. Frequency analysis revealed typical pseudocapacitive behavior with hybrid charge-storage mechanisms depending on the modulation frequency. In the low-frequency range (0.04–1 Hz), the optical amplitude was inversely proportional to the square root of the modulation frequency (i.e., ∆I ∝ f− 0.5; diffusion-limited process), while in the high-frequency range (1.25–100 Hz), it was inversely proportional to the modulation frequency (∆I ∝ f− 1; surface charging process). The contribution of each process was, therefore, determined and quantified using oEIS at the single-nanoparticle level. Because the geometry of single cuboid-shaped PBNPs can be precisely determined by scanning electron microscopy and atomic force microscopy, oEIS of single PBNPs allowed the determination of the depth of the surface charging layer, revealing it to be ~ 2 unit cells regardless of the nanoparticle size.


2021 ◽  
Vol 9 ◽  
Author(s):  
Adaly Garcia ◽  
Kinsley Wang ◽  
Fatima Bedier ◽  
Miriam Benavides ◽  
Zijian Wan ◽  
...  

Prussian blue is an iron-cyanide-based pigment steadily becoming a widely used electrochemical sensor in detecting hydrogen peroxide at low concentration levels. Prussian blue nanoparticles (PBNPs) have been extensively studied using traditional ensemble methods, which only provide averaged information. Investigating PBNPs at a single entity level is paramount for correlating the electrochemical activities to particle structures and will shed light on the major factors governing the catalyst activity of these nanoparticles. Here we report on using plasmonic electrochemical microscopy (PEM) to study the electrochemistry of PBNPs at the individual nanoparticle level. First, two types of PBNPs were synthesized; type I synthesized with double precursors method and type II synthesized with polyvinylpyrrolidone (PVP) assisted single precursor method. Second, both PBNPs types were compared on their electrochemical reduction to form Prussian white, and the effect from the different particle structures was investigated. Type I PBNPs provided better PEM sensitivity and were used to study the catalytic reduction of hydrogen peroxide. Progressively decreasing plasmonic signals with respect to increasing hydrogen peroxide concentration were observed, demonstrating the capability of sensing hydrogen peroxide at a single nanoparticle level utilizing this optical imaging technique.


Sign in / Sign up

Export Citation Format

Share Document