Effects of Bioactive Strontium-substituted Hydroxyapatite on Osseointegration of Polyethylene Terephthalate Artificial Ligaments

Author(s):  
Pan Ma ◽  
Tianwu Chen ◽  
Xiaopei Wu ◽  
Yuandi Hu ◽  
Kai Huang ◽  
...  

The insufficient bioactivity of polyethylene terephthalate (PET) artificial ligaments severely weakens the ligament-bone healing in anterior cruciate ligament (ACL) reconstruction, while osteogenic modification is a prevailing method to enhance osseointegration...

2022 ◽  
Vol 12 (5) ◽  
pp. 897-906
Author(s):  
XiaoChen Ju ◽  
Hao Chai ◽  
Sasirekha Krishnan ◽  
Abinaya Jaisankar ◽  
Murugan Ramalingam ◽  
...  

Acute anterior cruciate ligament (ACL) is a key structure that stabilizes knee joints. The objective of this research is to investigate the influence of ligament remnants preserved on the tendon-bone healing following ACL reconstruction and to examine postoperative articular cartilage degeneration in rabbit as a model animal. Sixty New Zealand rabbits are randomly divided into an ACL reconstruction without remnant preservation group (Group A; n = 30) or ACL reconstruction with remnant preservation group (Group B; n = 30). The expression of HIF-1α, VEGF, and micro vessel density (MVD) in the transplanted tendon was detected by immunohistochemical staining at week 6 and 12 after the operation. The signal intensity of the transplanted tendon was observed by MRI scanning, and the width of the bone tunnel was measured by CT scanning at week 6 and 12 after the operation. The graft biomechanics was tested 12 weeks after the operation. The JNK and MMP-13 expression levels were compared to analyze the cartilage degeneration of the knee at week 12 after the operation. The experimental results were analyzed and showed that the remnant-preserving ACL reconstruction is beneficial for bone healing of the tendon in rabbits, but ACL reconstruction with or without ligament remnants preserved will not affect knee articular cartilage degeneration post-surgery.


2018 ◽  
Vol 7 (5) ◽  
pp. 327-335 ◽  
Author(s):  
Y. Sato ◽  
R. Akagi ◽  
Y. Akatsu ◽  
Y. Matsuura ◽  
S. Takahashi ◽  
...  

Objectives To compare the effect of femoral bone tunnel configuration on tendon-bone healing in an anterior cruciate ligament (ACL) reconstruction animal model. Methods Anterior cruciate ligament reconstruction using the plantaris tendon as graft material was performed on both knees of 24 rabbits (48 knees) to mimic ACL reconstruction by two different suspensory fixation devices for graft fixation. For the adjustable fixation device model (Socket group; group S), a 5 mm deep socket was created in the lateral femoral condyle (LFC) of the right knee. For the fixed-loop model (Tunnel group; group T), a femoral tunnel penetrating the LFC was created in the left knee. Animals were sacrificed at four and eight weeks after surgery for histological evaluation and biomechanical testing. Results Histologically, both groups showed a mixture of direct and indirect healing patterns at four weeks, whereas only indirect healing patterns were observed in both groups at eight weeks. No significant histological differences were seen between the two groups at four and eight weeks in the roof zone (four weeks, S: mean 4.8 sd 1.7, T: mean 4.5 sd 0.5, p = 0.14; eight weeks, S: mean 5.8 sd 0.8, T: mean 4.8 sd 1.8, p = 0.88, Mann-Whitney U test) or side zone (four weeks, S: mean 5.0 sd 1.2, T: mean 4.8 sd 0.4, p = 0.43; eight weeks, S: mean 5.3 sd 0.8,T: mean 5.5 sd 0.8, p = 0.61, Mann-Whitney U test) . Similarly, no significant difference was seen in the maximum failure load between group S and group T at four (15.6 sd 9.0N and 13.1 sd 5.6N) or eight weeks (12.6 sd 3.6N and 17.1 sd 6.4N, respectively). Conclusion Regardless of bone tunnel configuration, tendon-bone healing after ACL reconstruction primarily occurred through indirect healing. No significant histological or mechanical differences were observed between adjustable and fixed-loop femoral cortical suspension methods. Cite this article: Y. Sato, R. Akagi, Y. Akatsu, Y. Matsuura, S. Takahashi, S. Yamaguchi, T. Enomoto, R. Nakagawa, H. Hoshi, T. Sasaki, S. Kimura, Y. Ogawa, A. Sadamasu, S. Ohtori, T. Sasho. The effect of femoral bone tunnel configuration on tendon-bone healing in an anterior cruciate ligament reconstruction: An animal study. Bone Joint Res 2018;7:327–335. DOI: 10.1302/2046-3758.75.BJR-2017-0238.R2.


2017 ◽  
Vol 45 (6) ◽  
pp. 1359-1369 ◽  
Author(s):  
Takao Inokuchi ◽  
Tomoyuki Matsumoto ◽  
Koji Takayama ◽  
Naoki Nakano ◽  
Shurong Zhang ◽  
...  

Background: Vascular CD34+ cells in anterior cruciate ligament (ACL) tissue have the potential for high proliferation and multilineage differentiation that can accelerate tendon-bone healing. While patient characteristics, such as age, can affect tendon-bone healing, the influence of elapsed time after injury on the healing process is unclear. Hypothesis: Cells obtained during the early phase after injury will exhibit a greater tendon-bone healing potential compared with chronic phase counterparts when applied to an immunodeficient rat model of ACL reconstruction. Study Design: Controlled laboratory study. Methods: Adult human ACL-ruptured tissue was harvested from patients undergoing arthroscopic primary ACL reconstruction and classified into 2 groups based on the time elapsed between injury and surgery: (1) early group (≤3 months from injury) and (2) chronic group (>3 months from injury). In addition, 76 ten-week-old female immunodeficient rats underwent ACL reconstruction, followed by intracapsular administration of one of the following: (1) ACL-derived cells from the early group (n = 5), (2) ACL-derived cells from the chronic group (n = 5), or (3) phosphate-buffered saline (PBS) only (n = 5). During the 8 weeks after surgery, histological (weeks 2, 4, 8), immunohistochemical (week 2), radiographic (weeks 0, 2, 4, 8), and biomechanical (week 8) analyses were performed to evaluate tendon-bone healing. Results: In the early group, the histological evaluation showed early healing, induction of endochondral ossification–like integration, and mature bone ingrowth. Micro–computed tomography showed that the tibial bone tunnels at week 4 and week 8 were significantly reduced in the early group compared with those in the chronic group and PBS group ( P < .05). Moreover, biomechanical tensile strength was significantly greater in the early group than in the other groups ( P < .05). An accelerated healing potential in the early group was further demonstrated by the enhancement of intrinsic angiogenesis/osteogenesis and human-derived vasculogenesis/osteogenesis. Conclusion: Compared with human ACL-derived cells obtained during the chronic phase, cells obtained during the early phase after injury have a greater tendon-bone healing potential when used in an immunodeficient rat model of ACL reconstruction. Clinical Relevance: During ACL reconstruction surgery, transplanting ACL remnant tissue in the early phase after injury could accelerate and enhance tendon-bone healing.


2020 ◽  
Vol 35 (2) ◽  
pp. 193-204
Author(s):  
Jiangyu Cai ◽  
Chengchong Ai ◽  
Jun Chen ◽  
Shiyi Chen

The purpose of the present study is to modify the polyethylene terephthalate ligament with hydroxyapatite via biomineralization and to investigate its effect on graft-bone healing. After biomineralization of hydroxyapatite, the surface characterization of polyethylene terephthalate ligament was examined by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and water contact angle measurements. The compatibility and osteoinduction, along with the underlying signaling pathway involved of hydroxyapatite-polyethylene terephthalate ligament, were evaluated in vitro. Moreover, a rabbit anterior cruciate ligament reconstruction model was established, and the polyethylene terephthalate or hydroxyapatite-polyethylene terephthalate artificial ligament was implanted into the knee. The micro-computed tomography analysis, histological, and immunohistochemical examination as well as biomechanical test were performed to investigate the effect of hydroxyapatite coating in vivo. The results of scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction showed that the hydroxyapatite was successfully deposited on the polyethylene terephthalate ligament. Water contact angle of the hydroxyapatite-polyethylene terephthalate group was significantly smaller than that of the polyethylene terephthalate group. The in vitro study showed that hydroxyapatite coating significantly improved adhesion and proliferation of MC3T3-E1 cells. The osteogenic differentiation of cells was also enhanced through the activation of ERK1/2 pathway. The micro-computed tomography, histological, and immunohistochemical results showed that biomineralization of hydroxyapatite significantly promoted new bone and fibrocartilage tissue formation at 12 weeks postoperatively. Moreover, the failure load and stiffness in the hydroxyapatite-polyethylene terephthalate group were higher than that in the polyethylene terephthalate group. Therefore, biomineralizaion of hydroxyapatite enhances the biocompatibility and osseointegration of the polyethylene terephthalate artificial ligament, thus promoting graft-bone healing for anterior cruciate ligament reconstruction through the activation of ERK1/2 pathway.


Author(s):  
Willem M.P. Heijboer ◽  
Mathijs A.M. Suijkerbuijk ◽  
Belle L. van Meer ◽  
Eric W.P. Bakker ◽  
Duncan E. Meuffels

AbstractMultiple studies found hamstring tendon (HT) autograft diameter to be a risk factor for anterior cruciate ligament (ACL) reconstruction failure. This study aimed to determine which preoperative measurements are associated with HT autograft diameter in ACL reconstruction by directly comparing patient characteristics and cross-sectional area (CSA) measurement of the semitendinosus and gracilis tendon on magnetic resonance imaging (MRI). Fifty-three patients with a primary ACL reconstruction with a four-stranded HT autograft were included in this study. Preoperatively we recorded length, weight, thigh circumference, gender, age, preinjury Tegner activity score, and CSA of the semitendinosus and gracilis tendon on MRI. Total CSA on MRI, weight, height, gender, and thigh circumference were all significantly correlated with HT autograft diameter (p < 0.05). A multiple linear regression model with CSA measurement of the HTs on MRI, weight, and height showed the most explained variance of HT autograft diameter (adjusted R 2 = 44%). A regression equation was derived for an estimation of the expected intraoperative HT autograft diameter: 1.2508 + 0.0400 × total CSA (mm2) + 0.0100 × weight (kg) + 0.0296 × length (cm). The Bland and Altman analysis indicated a 95% limit of agreement of ± 1.14 mm and an error correlation of r = 0.47. Smaller CSA of the semitendinosus and gracilis tendon on MRI, shorter stature, lower weight, smaller thigh circumference, and female gender are associated with a smaller four-stranded HT autograft diameter in ACL reconstruction. Multiple linear regression analysis indicated that the combination of MRI CSA measurement, weight, and height is the strongest predictor.


2021 ◽  
Vol 9 (2) ◽  
pp. 232596712098164
Author(s):  
Steven F. DeFroda ◽  
Devan D. Patel ◽  
John Milner ◽  
Daniel S. Yang ◽  
Brett D. Owens

Background: Anterior cruciate ligament (ACL) injury in National Basketball Association (NBA) players can have a significant impact on player longevity and performance. Current literature reports a high rate of return to play, but there are limited data on performance after ACL reconstruction (ACLR). Purpose/Hypothesis: To determine return to play and player performance in the first and second seasons after ACLR in NBA players. We hypothesized that players would return at a high rate. However, we also hypothesized that performance in the first season after ACLR would be worse as compared with the preinjury performance, with a return to baseline by postoperative year 2. Study Design: Case series; Level of evidence, 4. Methods: An online database of NBA athlete injuries between 2010 and 2019 was queried using the term ACL reconstruction. For the included players, the following data were recorded: name; age at injury; position; height, weight, and body mass index; handedness; NBA experience; dates of injury, surgery, and return; knee affected; and postoperative seasons played. Regular season statistics for 1 preinjury season and 2 postoperative seasons were compiled and included games started and played, minutes played, and player efficiency rating. Kaplan-Meier survivorship plots were computed for athlete return-to-play and retirement endpoints. Results: A total of 26 athletes underwent ACLR; of these, 84% (95% CI, 63.9%-95.5%) returned to play at a mean 372.5 days (95% CI, 323.5-421.5 days) after surgery. Career length after injury was a mean of 3.36 seasons (95% CI, 2.27-4.45 seasons). Factors that contributed to an increased probability of return to play included younger age at injury (odds ratio, 0.71 [95% CI, 0.47-0.92]; P = .0337) and fewer years of experience in the NBA before injury (odds ratio, 0.70 [95% CI, 0.45-0.93]; P = .0335). Postoperatively, athletes played a significantly lower percentage of total games in the first season (48.4%; P = .0004) and second season (62.1%; P = .0067) as compared with the preinjury season (78.5%). Player efficiency rating in the first season was 19.3% less than that in the preinjury season ( P = .0056). Performance in the second postoperative season was not significantly different versus preinjury. Conclusion: NBA players have a high rate of RTP after ACLR. However, it may take longer than a single season for elite NBA athletes to return to their full preinjury performance. Younger players and those with less NBA experience returned at higher rates.


Sign in / Sign up

Export Citation Format

Share Document