Polarographic investigations of anhydrous acetic acid solutions

1936 ◽  
Vol 32 ◽  
pp. 1447 ◽  
Author(s):  
D. MacGillavry
1942 ◽  
Vol 64 (7) ◽  
pp. 1523-1527 ◽  
Author(s):  
Arthur W. Davidson ◽  
W. Clarence Lanning ◽  
Sr. M. Maxine Zeller

1969 ◽  
Vol 116 (9) ◽  
pp. 1198 ◽  
Author(s):  
H. W. Salzberg ◽  
Allan Barnett ◽  
Stephen Kandler

2016 ◽  
Vol 866 ◽  
pp. 99-105 ◽  
Author(s):  
Smita Singh ◽  
M.U. Aswath ◽  
R.V. Ranganath

The present investigation is on the effect of red mud on the mechanical properties and durability of the geopolymer paste in sulphuric and acetic acid solution. Red mud and fly ash were used to form the geopolymer paste along with the alkalies. The variation of red mud in the paste composition was from 0% to 90%. Cylindrical shaped specimens of 1 inch diameter and 1 inch height were prepared. The specimens were immersed in 5% sulphuric acid and 5% acetic acid for 1, 7, 14, 28, 56 and 84 days and tested for weight loss, visual deformation, strength loss and colour of the solvent, based on the procedure specified by ASTM C 267 – 01. SEM/EDX Tests were performed on the geopolymer specimens. Test results show that initially, the strength of the geopolymer increased upon the addition of red mud. The strength was maximum when the percentage of red mud was 30%. The maximum strength obtained was 38 MPa for the paste containing 30% red mud using 10M alkali solution as against 31.69 MPa, when only fly ash was used. Geopolymer paste containing 30% and 50% red mud showed better resistance to acid attack. The strength loss was minimum for the samples containing 30% red mud in both inorganic and organic acid i.e. sulphuric and acetic acid.


1950 ◽  
Vol 34 (2) ◽  
pp. 211-224 ◽  
Author(s):  
E. S. Guzman Barron ◽  
Maria Isabel Ardao ◽  
Marion Hearon

The rate of the aerobic metabolism of pyruvic acid by bakers' yeast cells is determined mainly by the amount of undissociated acid present. As a consequence, the greatest rate of oxidation was observed at pH 2.8. Oxidation, at a slow rate, started at pH 1.08; at pH 9.4 there was no oxidation at all. The anaerobic metabolism, only a fraction of the aerobic, was observed only in acid solutions. There was none at pH values higher than 3. Pyruvic acid in the presence of oxygen was oxidized directly to acetic acid; in the absence of oxygen it was metabolized mainly by dismutation to lactic and acetic acids, and CO2. Acetic acid formation was demonstrated on oxidation of pyruvic acid at pH 1.91, and on addition of fluoroacetic acid. Succinic acid formation was shown by addition of malonic acid. These metabolic pathways in a cell so rich in carboxylase may be explained by the arrangement of enzymes within the cell, so that carboxylase is at the center, while pyruvic acid oxidase is located at the periphery. Succinic and citric acids were oxidized only in acid solutions up to pH 4. Malic and α-ketoglutaric acids were not oxidized, undoubtedly because of lack of penetration.


2015 ◽  
Vol 212 ◽  
pp. 16-22 ◽  
Author(s):  
Dawn M. Stovall ◽  
Amber Schmidt ◽  
Colleen Dai ◽  
Shoshana Zhang ◽  
William E. Acree ◽  
...  

2006 ◽  
Vol 21 (3) ◽  
pp. 151-154 ◽  
Author(s):  
Rogério Saad-Hossne ◽  
René Gamberini Prado ◽  
William Saad Hossne

PURPOSE: To analyze, in vitro, the effects of acetylsalicylic acid (aspirin) and acetic acid solutions on VX2 carcinoma cells in suspension and to examine the correlation between these effects and neoplastic cell death. METHODS: The VX2 tumor cells (10(7) cells/ml) were incubated in solutions containing differing concentrations (2.5% and 5%) of either acetylsalicylic acid or acetic acid, or in saline solution (controls). Every five minutes, cell viability was tested (using the trypan blue test) and analyzed under light microscopy. RESULTS: Tumor cell viability (in %) decreased progressively and, by 30 minutes, neoplastic cell death had occurred in all solutions. CONCLUSION: Based on this experimental model and the methodology employed, we conclude that these solutions cause neoplastic cell death in vitro.


1973 ◽  
Vol 44 (1) ◽  
pp. 37-45 ◽  
Author(s):  
M. Mastragostino ◽  
G. Casalbore ◽  
S. Valcher

Sign in / Sign up

Export Citation Format

Share Document