In the absence of phosphate shuttling, exercise reveals the in vivo importance of creatine-independent mitochondrial ADP transport

2016 ◽  
Vol 473 (18) ◽  
pp. 2831-2843 ◽  
Author(s):  
Paula M. Miotto ◽  
Graham P. Holloway

The transport of cytosolic adenosine diphosphate (ADP) into the mitochondria is a major control point in metabolic homeostasis, as ADP concentrations directly affect glycolytic flux and oxidative phosphorylation rates within mitochondria. A large contributor to the efficiency of this process is thought to involve phosphocreatine (PCr)/Creatine (Cr) shuttling through mitochondrial creatine kinase (Mi-CK), whereas the biological importance of alterations in Cr-independent ADP transport during exercise remains unknown. Therefore, we utilized an Mi-CK knockout (KO) model to determine whether in vivo Cr-independent mechanisms are biologically important for sustaining energy homeostasis during exercise. Ablating Mi-CK did not alter exercise tolerance, as the time to volitional fatigue was similar between wild-type (WT) and KO mice at various exercise intensities. In addition, skeletal muscle metabolic profiles after exercise, including glycogen, PCr/Cr ratios, free ADP/adenosine monophosphate (AMP), and lactate, were similar between genotypes. While these data suggest that the absence of PCr/Cr shuttling is not detrimental to maintaining energy homeostasis during exercise, KO mice displayed a dramatic increase in Cr-independent mitochondrial ADP sensitivity after exercise. Specifically, whereas mitochondrial ADP sensitivity decreased with exercise in WT mice, in stark contrast, exercise increased mitochondrial Cr-independent ADP sensitivity in KO mice. As a result, the apparent ADP Km was 50% lower in KO mice after exercise, suggesting that in vivo activation of voltage-dependent anion channel (VDAC)/adenine nucleotide translocase (ANT) can support mitochondrial ADP transport. Altogether, we provide insight that Cr-independent ADP transport mechanisms are biologically important for regulating ADP sensitivity during exercise, while highlighting complex regulation and the plasticity of the VDAC/ANT axis to support adenosine triphosphate demand.

1999 ◽  
Vol 66 ◽  
pp. 167-179 ◽  
Author(s):  
Martin Crompton ◽  
Sukaina Virji ◽  
Veronica Doyle ◽  
Nicholas Johnson ◽  
John M. Ward

This chapter reviews recent advances in the identification of the structural elements of the permeability transition pore. The discovery that cyclosporin A (CsA) inhibits the pore proved instrumental. Various approaches indicate that CsA blocks the pore by binding to cyclophilin (CyP)-D. In particular, covalent labelling of CyP-D in situ by a photoactive CsA derivative has shown that pore ligands have the same effects on the degree to which CsA both blocks the pore and binds to CyP-D. The recognition that CyP-D is a key component has enabled the other constituents to be resolved. Use of a CyP-D fusion protein as affinity matrix has revealed that CyP-D binds very strongly to 1:1 complexes of the voltage-dependent anion channel (from the outer membrane) and adenine nucleotide translocase (inner membrane). Our current model envisages that the pore arises as a complex between these three components at contact sites between the mitochondrial inner and outer membranes. This is in line with recent reconstitutions of pore activity from protein fractions containing these proteins. The strength of interaction between these proteins suggests that it may be a permanent feature rather than assembled only under pathological conditions. Calcium, the key activator of the pore, does not appear to affect pore assembly; rather, an allosteric action allowing pore flicker into an open state is indicated. CsA inhibits pore flicker and lowers the binding affinity for calcium. Whether adenine nucleotide translocase or the voltage-dependent anion channel (via inner membrane insertion) provides the inner membrane pore has not been settled, and data relevant to this issue are also documented.


2020 ◽  
Vol 295 (43) ◽  
pp. 14653-14665
Author(s):  
Shashank Ranjan Srivastava ◽  
Radhakrishnan Mahalakshmi

Transmembrane β-barrels of eukaryotic outer mitochondrial membranes (OMMs) are major channels of communication between the cytosol and mitochondria and are indispensable for cellular homeostasis. A structurally intriguing exception to all known transmembrane β-barrels is the unique odd-stranded, i.e. 19-stranded, structures found solely in the OMM. The molecular origins of this 19-stranded structure and its associated functional significance are unclear. In humans, the most abundant OMM transporter is the voltage-dependent anion channel. Here, using the human voltage-dependent anion channel as our template scaffold, we designed and engineered odd- and even-stranded structures of smaller (V216, V217, V218) and larger (V220, V221) barrel diameters. Determination of the structure, dynamics, and energetics of these engineered structures in bilayer membranes reveals that the 19-stranded barrel surprisingly holds modest to low stability in a lipid-dependent manner. However, we demonstrate that this structurally metastable protein possesses superior voltage-gated channel regulation, efficient mitochondrial targeting, and in vivo cell survival, with lipid-modulated stability, all of which supersede the occurrence of a metastable 19-stranded scaffold. We propose that the unique structural adaptation of these transmembrane transporters exclusively in mitochondria bears strong evolutionary basis and is functionally significant for homeostasis.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Qunli Cheng ◽  
Zeljko J Bosnjak ◽  
Wai-Meng Kwok

The mitochondrial permeability transition pore (mPTP) has been implicated as the end effector in ischemic and pharmacological preconditioning. Though the molecular composition of the mPTP is thought to consist of cyclophilin D located in the mitochondrial matrix, adenine nucleotide translocase on the inner mitochondrial membrane, and the voltage-dependent anion channel (VDAC) on the outer mitochondrial membrane, recent studies have raised the possibility that VDAC may be a regulatory, rather than a major, component of mPTP. Nevertheless, VDAC is likely to be a critical component of the preconditioning signaling pathway since it is the main conduit for metabolite diffusion across the mitochondrial outer membrane. Yet, the direct measurements of cardiac VDAC activity and modulation have been limited. In the present study, we purified VDAC from rat hearts using standard procedure and investigated its modulation by phosphatase and hexokinase. VDAC was incorporated into planar lipid bilayer for measurements of channel activities. The channel exhibited the reported voltage-dependent gating. Several conductance states were identified, with the most prevalent between 1.5 to 2 nS in 0.5 M NaCl. Koenig’s polyanion, a VDAC blocker, triggered channel flickering and decreased the mean current by 78±6%. In the presence of phosphatase (1 unit/ml), the mean conductance significantly increased from 1.81±0.03 to 3.68±0.61 nS (n=9; mean±SEM). However, the addition of a recombinant hexokinase (5 units/ml; GenWay Biotech) had no significant effect on the phosphatase-enhanced VDAC current (n=4). In contrast, recombinant hexokinase alone significantly decreased the mean conductance from 1.75±0.05 to 0.79±0.19 nS (n=4). The addition of phosphatase reversed the inhibitory effect of hexokinase and further enhanced VDAC activity, increasing the mean conductance to 2.69±0.19 nS (n=4). Our results suggest that the dephosphorylation of VDAC prevents the inhibitory effects of hexokinase. Furthermore, VDAC activity suppressed by hexokinase can be reversed by dephosphorylation of the channel. In conclusion, we have reported on a novel observation at the functional level that basal phosphorylation of the cardiac VDAC may be required for its modulation by hexokinase.


2012 ◽  
Vol 287 (42) ◽  
pp. 35004-35020 ◽  
Author(s):  
Rahul Bhowmick ◽  
Umesh Chandra Halder ◽  
Shiladitya Chattopadhyay ◽  
Shampa Chanda ◽  
Satabdi Nandi ◽  
...  

Viruses have evolved to encode multifunctional proteins to control the intricate cellular signaling pathways by using very few viral proteins. Rotavirus is known to express six nonstructural and six structural proteins. Among them, NSP4 is the enterotoxin, known to disrupt cellular Ca2+ homeostasis by translocating to endoplasmic reticulum. In this study, we have observed translocation of NSP4 to mitochondria resulting in dissipation of mitochondrial membrane potential during virus infection and NSP4 overexpression. Furthermore, transfection of the N- and C-terminal truncated NSP4 mutants followed by analyzing NSP4 localization by immunofluorescence microscopy identified the 61–83-amino acid region as the shortest mitochondrial targeting signal. NSP4 exerts its proapoptotic effect by interacting with mitochondrial proteins adenine nucleotide translocator and voltage-dependent anion channel, resulting in dissipation of mitochondrial potential, release of cytochrome c from mitochondria, and caspase activation. During early infection, apoptosis activation by NSP4 was inhibited by the activation of cellular survival pathways (PI3K/AKT), because PI3K inhibitor results in early induction of apoptosis. However, in the presence of both PI3K inhibitor and NSP4 siRNA, apoptosis was delayed suggesting that the early apoptotic signal is initiated by NSP4 expression. This proapoptotic function of NSP4 is balanced by another virus-encoded protein, NSP1, which is implicated in PI3K/AKT activation because overexpression of both NSP4 and NSP1 in cells resulted in reduced apoptosis compared with only NSP4-expressing cells. Overall, this study reports on the mechanism by which enterotoxin NSP4 exerts cytotoxicity and the mechanism by which virus counteracts it at the early stage for efficient infection.


2018 ◽  
Author(s):  
Blake R. Wilde ◽  
Zhizhou Ye ◽  
Donald E. Ayer

ABSTRACTMondoA and its transcriptional target thioredoxin-interacting protein (TXNIP) constitute a regulatory loop that senses glycolytic flux and controls glucose availability. Cellular stress also triggers MondoA activity and TXNIP expression. To understand how MondoA integrates glucose and stress signals, we studied its activation by acidosis. We found that acidosis drives mitochondrial ATP (mtATP) synthesis. The subsequent export of mtATP from mitochondria via adenine-nucleotide transporter and voltage-dependent anion channel, and the enzymatic activity of mitochondria-bound hexokinase results in the production of glucose-6-phosphate (G6P), a known activator of MondoA transcriptional activity. MondoA localizes to the outer-mitochondrial membrane (OMM), and in response to G6P, shuttles to the nucleus and activates transcription. Our data suggests that MondoA is a required feature of a glucose- and mtATP-dependent, OMM-localized signaling center. We propose MondoA functions as a coincidence detector and its ability to sense glucose and cellular stress is coupled to the concerted production of G6P.


Sign in / Sign up

Export Citation Format

Share Document