scholarly journals Topological organisation of the phosphatidylinositol 4,5-bisphosphate–phospholipase C resynthesis cycle: PITPs bridge the ER–PM gap

2016 ◽  
Vol 473 (23) ◽  
pp. 4289-4310 ◽  
Author(s):  
Shamshad Cockcroft ◽  
Padinjat Raghu

Phospholipase C (PLC) is a receptor-regulated enzyme that hydrolyses phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) triggering three biochemical consequences, the generation of soluble inositol 1,4,5-trisphosphate (IP3), membrane-associated diacylglycerol (DG) and the consumption of PM PI(4,5)P2. Each of these three signals triggers multiple molecular processes impacting key cellular properties. The activation of PLC also triggers a sequence of biochemical reactions, collectively referred to as the PI(4,5)P2 cycle that culminates in the resynthesis of this lipid. The biochemical intermediates of this cycle and the enzymes that mediate these reactions are topologically distributed across two membrane compartments, the PM and the endoplasmic reticulum (ER). At the PM, the DG formed during PLC activation is rapidly converted into phosphatidic acid (PA) that needs to be transported to the ER where the machinery for its conversion into PI is localised. Conversely, PI from the ER needs to be rapidly transferred to the PM where it can be phosphorylated by lipid kinases to regenerate PI(4,5)P2. Thus, two lipid transport steps between membrane compartments through the cytosol are required for the replenishment of PI(4,5)P2 at the PM. Here, we review the topological constraints in the PI(4,5)P2 cycle and current understanding how these constraints are overcome during PLC signalling. In particular, we discuss the role of lipid transfer proteins in this process. Recent findings on the biochemical properties of a membrane-associated lipid transfer protein of the PITP family, PITPNM proteins (alternative name RdgBα/Nir proteins) that localise to membrane contact sites are discussed. Studies in both Drosophila and mammalian cells converge to provide a resolution to the conundrum of reciprocal transfer of PA and PI during PLC signalling.

2016 ◽  
Vol 44 (2) ◽  
pp. 493-498 ◽  
Author(s):  
Léa P. Wilhelm ◽  
Catherine Tomasetto ◽  
Fabien Alpy

Membrane contact sites (MCSs) are subcellular regions where the membranes of distinct organelles come into close apposition. These specialized areas of the cell, which are involved in inter-organelle metabolite exchange, are scaffolded by specific complexes. STARD3 [StAR (steroidogenic acute regulatory protein)-related lipid transfer domain-3] and its close paralogue STARD3NL (STARD3 N-terminal like) are involved in the formation of contacts between late-endosomes and the endoplasmic reticulum (ER). The lipid transfer protein (LTP) STARD3 and STARD3NL, which are both anchored on the limiting membrane of late endosomes (LEs), interact with ER-anchored VAP [VAMP (vesicle-associated membrane protein)-associated protein] (VAP-A and VAP-B) proteins. This direct interaction allows ER–endosome contact formation. STARD3 or STARD3NL-mediated ER–endosome contacts, which affect endosome dynamics, are believed to be involved in cholesterol transport.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eugenio de la Mora ◽  
Manuela Dezi ◽  
Aurélie Di Cicco ◽  
Joëlle Bigay ◽  
Romain Gautier ◽  
...  

AbstractMembrane contact sites (MCS) are subcellular regions where two organelles appose their membranes to exchange small molecules, including lipids. Structural information on how proteins form MCS is scarce. We designed an in vitro MCS with two membranes and a pair of tethering proteins suitable for cryo-tomography analysis. It includes VAP-A, an ER transmembrane protein interacting with a myriad of cytosolic proteins, and oxysterol-binding protein (OSBP), a lipid transfer protein that transports cholesterol from the ER to the trans Golgi network. We show that VAP-A is a highly flexible protein, allowing formation of MCS of variable intermembrane distance. The tethering part of OSBP contains a central, dimeric, and helical T-shape region. We propose that the molecular flexibility of VAP-A enables the recruitment of partners of different sizes within MCS of adjustable thickness, whereas the T geometry of the OSBP dimer facilitates the movement of the two lipid-transfer domains between membranes.


2019 ◽  
Author(s):  
RS D’Souza ◽  
JY Lim ◽  
A Turgut ◽  
K Servage ◽  
J Zhang ◽  
...  

AbstractCoordinated assembly and disassembly of integrin-mediated focal adhesions (FAs) is essential for cell migration. Many studies have shown that FA disassembly requires Ca2+ influx, however our understanding of this process remains incomplete. Here we show that Ca2+ influx via STIM1/Orai1 calcium channels, which cluster near FAs, leads to activation of the GTPase Arf5 via the Ca2+-activated GEF IQSec1, and that both IQSec1 and Arf5 activation are essential for adhesion disassembly. We further show that IQSec1 forms a complex with the lipid transfer protein ORP3, and that Ca2+ influx triggers PKC-dependent translocation of this complex to ER/plasma membrane contact sites adjacent to FAs. In addition to allosterically activating IQSec1, ORP3 also extracts PI4P from the PM, in exchange for phosphatidylcholine. ORP3-mediated lipid exchange is also important for FA turnover. Together, these findings identify a new pathway that links calcium influx to FA turnover during cell migration.


2018 ◽  
Vol 217 (10) ◽  
pp. 3322-3324 ◽  
Author(s):  
Mingming Gao ◽  
Hongyuan Yang

The evolutionarily conserved VPS13 proteins localize to multiple membrane contact sites though their function and regulation has been elusive. Bean et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201804111) found that competitive adaptors control the different localizations of yeast Vps13p, while Kumar et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201807019) provide biochemical and structural evidence for VPS13 proteins in the nonvesicular transport of phospholipids.


2016 ◽  
Vol 44 (1) ◽  
pp. 286-292 ◽  
Author(s):  
Shamshad Cockcroft ◽  
Kathryn Garner ◽  
Shweta Yadav ◽  
Evelyn Gomez-Espinoza ◽  
Padinjat Raghu

Phosphatidylinositol (PI) is the precursor lipid for the synthesis of PI 4,5-bisphosphate [PI(4,5)P2] at the plasma membrane (PM) and is sequentially phosphorylated by the lipid kinases, PI 4-kinase and phosphatidylinositol 4-phosphate (PI4P)-5-kinase. Receptor-mediated hydrolysis of PI(4,5)P2 takes place at the PM but PI resynthesis occurs at the endoplasmic reticulum (ER). Thus PI(4,5)P2 resynthesis requires the reciprocal transport of two key intermediates, phosphatidic acid (PA) and PI between the ER and the PM. PI transfer proteins (PITPs), defined by the presence of the PITP domain, can facilitate lipid transfer between membranes; the PITP domain comprises a hydrophobic cavity with dual specificity but accommodates a single phospholipid molecule. The class II PITP, retinal degeneration type B (RdgB)α is a multi-domain protein and its PITP domain can bind and transfer PI and PA. In Drosophila photoreceptors, a well-defined G-protein-coupled phospholipase Cβ (PLCβ) signalling pathway, phototransduction defects resulting from loss of RdgBα can be rescued by expression of the PITP domain provided it is competent for both PI and PA transfer. We propose that RdgBα proteins maintain PI(4,5)P2 homoeostasis after PLC activation by facilitating the reciprocal transport of PA and PI at ER–PM membrane contact sites.


2020 ◽  
Author(s):  
Eugenio de la Mora ◽  
Manuela Dezi ◽  
Aurélie Di Cicco ◽  
Joëlle Bigay ◽  
Romain Gautier ◽  
...  

SummaryMembrane contact sites (MCS) are subcellular regions where two organelles appose their membranes to exchange small molecules, including lipids. Structural information on how proteins form MCS is scarce. We designed an in vitro MCS with two membranes and a pair of tethering proteins suitable for cryo-tomography analysis. It includes VAP-A, an ER transmembrane protein interacting with a myriad of cytosolic proteins, and oxysterol-binding protein (OSBP), a lipid transfer protein that transports cholesterol from the ER to the trans Golgi network. We show that VAP-A is a highly flexible protein, allowing formation of MCS of variable intermembrane distance. The tethering part of OSBP contains a central, dimeric, and helical T-shape region. We propose that the molecular flexibility of VAP-A enables the recruitment of partners of different sizes within MCS of adjustable thickness, whereas the T geometry of the OSBP dimer facilitates the movement of the two lipid-transfer domains between membranes.


2021 ◽  
Author(s):  
David Kovacs ◽  
Anne-Sophie Gay ◽  
Lucile Fleuriot ◽  
Delphine Debayle ◽  
Ana Rita Dias Araujo ◽  
...  

Golgi lipid environment regulates sorting and cargo secretion. However, the mechanisms that spatiotemporally control the lipid composition of the secretory membranes to drive cargo trafficking are poorly understood. Lipid transfer proteins regulate the concentration of specific lipids at membrane contact sites. We hypothesised that by catalysing cholesterol/PI(4)P exchange at ER-trans-Golgi membrane contact sites the lipid transfer protein oxysterol binding protein (OSBP) affects the secretion of a subset of cargoes. Here, we report that OSBP is a major epithelial protein as its inhibition leads to complete loss of apico-basal polarity. By mapping the OSBP proximity proteome with the biotin ligase TurboID, we found that OSBP controls the secretion of multiple membrane associated proteins, including key polarity determinants such as E-cadherin. Mechanistically, we established that OSBP contributes to E-cadherin secretion by supplying cholesterol to post-Golgi membranes. Importantly, when cells downregulate cell-cell junctions upon epithelial-to-mesenchymal transition, they re-wire their lipid homeostasis and downregulate OSBP as well, thus altering the trafficking of the OSBP-dependent secretory cargoes.


Sign in / Sign up

Export Citation Format

Share Document