scholarly journals Engineering potassium activation into biosynthetic thiolase.

2021 ◽  
Author(s):  
Andrew C Marshall ◽  
John B Bruning

Activation of enzymes by monovalent cations (M+) is a widespread phenomenon in biology. Despite this, there are few structure-based studies describing the underlying molecular details. Thiolases are a ubiquitous and highly conserved family of enzymes containing both K+-activated and K+-independent members. Guided by structures of naturally occurring K+-activated thiolases, we have used a structure-based approach to engineer K+-activation into a K+-independent thiolase. To our knowledge, this is the first demonstration of engineering K+-activation into an enzyme, showing the malleability of proteins to accommodate M+ ions as allosteric regulators. We show that a small number of protein structural features encode K+-activation in this class of enzyme. Specifically, two residues near the substrate binding site are sufficient for K+-activation: A tyrosine residue is required to complete the K+ coordination sphere, and a glutamate residue provides a compensating charge for the bound K+ ion. Further to these, a distal residue is important for positioning a K+-coordinating water molecule that forms a direct hydrogen bond to the substrate. The stability of a cation-π interaction between a positively charged residue and the substrate is determined by the conformation of the loop surrounding the substrate binding site. Our results suggest that this cation-π interaction effectively overrides K+-activation, and is therefore destabilised in K+-activated thiolases. Evolutionary conservation of these amino acids provides a promising signature sequence for predicting K+-activation in thiolases. Together, our structural, biochemical and bioinformatic work provide important mechanistic insights into how enzymes can be allosterically activated by M+ ions.

2020 ◽  
Vol 76 (5) ◽  
pp. 484-495
Author(s):  
Rhys Grinter ◽  
Trevor Lithgow

The outer membrane of Gram-negative bacteria is highly impermeable to hydrophilic molecules of larger than 600 Da, protecting these bacteria from toxins present in the environment. In order to transport nutrients across this impermeable membrane, Gram-negative bacteria utilize a diverse family of outer-membrane proteins called TonB-dependent transporters. The majority of the members of this family transport iron-containing substrates. However, it is becoming increasingly clear that TonB-dependent transporters target chemically diverse substrates. In this work, the structure and phylogenetic distribution of the TonB-dependent transporter YncD are investigated. It is shown that while YncD is present in some enteropathogens, including Escherichia coli and Salmonella spp., it is also widespread in Gammaproteobacteria and Betaproteobacteria of environmental origin. The structure of YncD was determined, showing that despite a distant evolutionary relationship, it shares structural features with the ferric citrate transporter FecA, including a compact positively charged substrate-binding site. Despite these shared features, it is shown that YncD does not contribute to the growth of E. coli in pure culture under iron-limiting conditions or with ferric citrate as an iron source. Previous studies of transcriptional regulation in E. coli show that YncD is not induced under iron-limiting conditions and is unresponsive to the ferric uptake regulator (Fur). These observations, combined with the data presented here, suggest that YncD is not responsible for the transport of an iron-containing substrate.


2020 ◽  
Author(s):  
Rhys Grinter ◽  
Trevor Lithgow

AbstractThe outer membrane of Gram-negative bacteria is highly impermeable to hydrophilic molecules larger than 600 Da, protecting these bacteria from toxins present in the environment. In order to transport nutrients across this impermeable membrane, Gram-negative bacteria utilise a diverse family of outer-membrane proteins called TonB-dependent transporters. The majority of this family transport iron-containing substrates. However, it is becoming increasingly clear that TonB-dependent transporters target chemically diverse substrates. In this work, we investigate the structure and phylogenetic distribution of the TonB-dependent transporter YncD. We show that while YncD is present in some enteropathogens including E. coli and Salmonella spp., it is also widespread in Gamma and Betaproteobacteria of environmental origin. We determine the structure of YncD, showing that despite a distant evolutionary relationship, it shares structural features with the ferriccitrate transporter FecA, including a compact positively-charged substrate-binding site. Despite these shared features, we show that YncD does not contribute to the growth of E. coli in pure culture under-iron limiting conditions or with ferric-citrate as an iron source. Previous studies on transcriptional regulation in E. coli show that YncD is not induced under iron-limiting conditions and is unresponsive to the Ferric uptake regulator (Fur). These observations combined with the data we present, suggest that YncD is not responsible for the transport of an iron-containing substrate.


2020 ◽  
Vol 21 (2) ◽  
pp. 117-130 ◽  
Author(s):  
Mohammad J. Hosen ◽  
Mahmudul Hasan ◽  
Sourav Chakraborty ◽  
Ruhshan A. Abir ◽  
Abdullah Zubaer ◽  
...  

Objectives: The Arterial Tortuosity Syndrome (ATS) is an autosomal recessive connective tissue disorder, mainly characterized by tortuosity and stenosis of the arteries with a propensity towards aneurysm formation and dissection. It is caused by mutations in the SLC2A10 gene that encodes the facilitative glucose transporter GLUT10. The molecules transported by and interacting with GLUT10 have still not been unambiguously identified. Hence, the study attempts to identify both the substrate binding site of GLUT10 and the molecules interacting with this site. Methods: As High-resolution X-ray crystallographic structure of GLUT10 was not available, 3D homology model of GLUT10 in open conformation was constructed. Further, molecular docking and bioinformatics investigation were employed. Results and Discussion: Blind docking of nine reported potential in vitro substrates with this 3D homology model revealed that substrate binding site is possibly made with PRO531, GLU507, GLU437, TRP432, ALA506, LEU519, LEU505, LEU433, GLN525, GLN510, LYS372, LYS373, SER520, SER124, SER533, SER504, SER436 amino acid residues. Virtual screening of all metabolites from the Human Serum Metabolome Database and muscle metabolites from Human Metabolite Database (HMDB) against the GLUT10 revealed possible substrates and interacting molecules for GLUT10, which were found to be involved directly or partially in ATS progression or different arterial disorders. Reported mutation screening revealed that a highly emergent point mutation (c. 1309G>A, p. Glu437Lys) is located in the predicted substrate binding site region. Conclusion: Virtual screening expands the possibility to explore more compounds that can interact with GLUT10 and may aid in understanding the mechanisms leading to ATS.


FEBS Letters ◽  
2006 ◽  
Vol 580 (3) ◽  
pp. 912-917 ◽  
Author(s):  
Jiro Arima ◽  
Yoshiko Uesugi ◽  
Misugi Uraji ◽  
Masaki Iwabuchi ◽  
Tadashi Hatanaka

Sign in / Sign up

Export Citation Format

Share Document