scholarly journals Factors affecting formiminoglutamic acid excretion in vitamin B12 deficiency

1970 ◽  
Vol 116 (4) ◽  
pp. 681-688 ◽  
Author(s):  
Hedley R. Marston ◽  
Shirley H. Allen

1. Formiminoglutamic acid, a product of the catabolism of histidine, is excreted in abnormally large amounts in the urines of vitamin B12-deficient rats and of vitamin B12-deficient sheep; the excretion is reduced to negligible amounts after administration of vitamin B12. 2. After administration of certain methyl donors to vitamin B12-deficient rats or sheep urinary excretion of formiminoglutamic acid is temporarily decreased. 3. Irrespective of the pteroylglutamic acid status of the animals neither vitamin B12-deficient rats nor vitamin B12-deficient sheep have the ability to deal efficiently with histidine. 4. In sheep, urinary excretion of formiminoglutamic acid is increased after administration of aminopterin; treatment with pteroylglutamic acid restores the ability of the animal to deal with the catabolic products of histidine. 5. The possible functions of vitamin B12 and methionine in relieving a virtual deficiency of pteroylglutamic acid are discussed.

Blood ◽  
1951 ◽  
Vol 6 (10) ◽  
pp. 867-891 ◽  
Author(s):  
G. E. CARTWRIGHT ◽  
BETTY TATTING ◽  
JEAN ROBINSON ◽  
N. M. FELLOWS ◽  
F. D. GUNN ◽  
...  

Abstract In an effort to produce a deficiency of vitamin B12 a total of 70 pigs were fed a purified diet containing soybean alpha protein in place of casein. One group of animals was started on the diet at 2 to 7 days of age. A second group began at 21 to 28 days of age. Methionine, iodinate casein, desiccated thyroid and pteroylglutamic acid were added to the diet of certain animals and! omitted from the diet of other pigs. In addition, 9 pigs were gastrectomized. Forty-three of the animals survived for a sufficiently long period of time for adequate evaluation of the results of the experiment. Severe liver damage was observed in 24 of the 25 animals autopsied. The only animal not showing liver damage received vitamin B12 from the beginning of the experiment. Necrosis of the liver cells, fatty infiltration, or both, occurred in the presence of a high fat diet containing apparently adequate amounts of protein, choline, vitamin E and methionine. These pathologic changes were apparently prevented but not reversed by the administration of vitamin B12. Growth of the animals on the above diets without added vitamin B12 was retarded as compared with the growth of animals on the same diet supplemented with this vitamin. The administration of vitamin B12 to the deficient animals resulted in rapid growth. Of the 39 animals not receiving vitamin B12 13 failed to develop anemia, 16 developed a mild anemia and in 10 a moderately severe anemia was present. When present the anemia was normocytic and in 24 pigs was accompanied by a moderately severe neutropenia. Differential cell counts on the sternal marrow were normal except for a slight increase in the proportion of normoblasts. These hematologic alterations were neither consistently or completely corrected by the administration of vitamin B12 in spite of the fact that definite and sometimes marked reticulocyte increases followed. When methionine deficiency was associated with vitamin B12 deficiency, anemia appeared to be more severe. The administration of aureomycin, an "animal protein factor," did not stimulate growth and failed to induce a hemopoietic response. There was no macrocytic anemia, the bone marrow was not megaloblastic, and neurologic disturbances or morphologic alterations in the neutrophils were not observed. These results are in contrast to those obtained in pigs with an experimentally produced deficiency of pteroylglutamic acid. Such animals develop macrocytic anemia, leukopenia and a macronormoblastic type of bone marrow. It is not possible to give with any assurance the reason why megaloblastic anemia was not produced in the "B12-deficient" animals. This may have been due to the fact that (1) the deficiency was not sufficiently severe to result in such a change in the hemopoietic system; or (2) because pteroylglutamic acid prevents the development of megaloblastic anemia even in the absence of vitamin B12.


2015 ◽  
Vol 27 (2) ◽  
pp. 341 ◽  
Author(s):  
Amrita Khaire ◽  
Richa Rathod ◽  
Nisha Kemse ◽  
Anvita Kale ◽  
Sadhana Joshi

Maternal vitamin B12 deficiency leads to an adverse pregnancy outcome and increases the risk for developing diabetes and metabolic syndrome in mothers in later life. Our earlier studies have demonstrated that vitamin B12 and n-3 polyunsaturated fatty acids (PUFA) are interlinked in the one carbon cycle. The present study for the first time examines the effect of maternal n-3 PUFA supplementation to vitamin B12 deficient or supplemented diets on pregnancy outcome, fatty-acid status and metabolic variables in Wistar rats. Pregnant dams were assigned to one of the following groups: control, vitamin B12 deficient, vitamin B12 supplemented, vitamin B12 deficient + n-3 PUFA or vitamin B12 supplemented + n-3 PUFA. The amount of vitamin B12 in the supplemented group was 0.50 μg kg–1 diet and n-3 PUFA was alpha linolenic acid (ALA) 1.68, eicosapentaenoic acid 5.64, docosahexaenoic acid (DHA) 3.15 (g per 100 g fatty acids per kg diet). Our findings indicate that maternal vitamin B12 supplementation did not affect the weight gain of dams during pregnancy but reduced litter size and weight and was ameliorated by n-3 PUFA supplementation. Vitamin B12 deficiency or supplementation resulted in a low percentage distribution of plasma arachidonic acid and DHA. n-3 PUFA supplementation to these diets improved the fatty-acid status. Vitamin B12 deficiency resulted in higher homocysteine and insulin levels, which were normalised by supplementation with either vitamin B12 or n-3 PUFA. Our study suggests that maternal vitamin B12 status is critical in determining pregnancy outcome and metabolic variables in dams and that supplementation with n-3 PUFA is beneficial.


1973 ◽  
Vol 136 (2) ◽  
pp. 279-293 ◽  
Author(s):  
Richard M. Smith ◽  
William S. Osborne-White

1. Metabolism of folate was studied in six ewes in an advanced state of vitamin B12 deficiency as judged by voluntary food intake and in their pair-fed controls receiving vitamin B12. A group of four animals that were maintained throughout the experiment at pasture was also studied. 2. After 34–40 weeks on the cobalt-deficient diet urinary excretion of formiminoglutamate by four deficient animals was about 3.2mmol/day and this was not significantly decreased by injection of three of them with about 4.5μg of [2-14C]folate/kg body weight per day for 5 days. Three days after the last injection retention of [2-14C]folate by the livers of the deficient animals (5.5% of the dose) was lower than that of their pair-fed controls (26% of the dose) but there was no evidence of net retention of injected folate in the livers of either group. Urinary excretion of 14C indicated that renal clearance of folate may have been impaired in very severe vitamin B12 deficiency. 3. As estimated by microbiological assays total folates in the livers of animals at pasture (12.9μg/g) included about 24% of 5-methyltetrahydrofolate as compared with about 72% of a total of 12.5μg/g in three further ewes fed on a stock diet of wheaten hay-chaff and lucerne-chaff. Liver folates of vitamin B12-deficient animals (0.5μg/g) included about 88% of 5-methyltetrahydrofolate as compared with about 51% of a total of 5.2μg/g in pair-fed animals treated with vitamin B12. 4. Chromatography of liver folates of the pair-fed animals permitted quantitative estimates of the pteroylglutamates present. The results showed that the vitamin B12-deficient livers were more severely depleted of tetrahydrofolates and formyltetrahydrofolates than of methyltetrahydrofolates and that as the deficiency developed they were more severely depleted of the higher polyglutamates than of the monoglutamate within each of these classes. Results from animals injected with [2-14C]folate indicated an impairment of the exchange between pteroylmonoglutamates and pteroylpolyglutamates in the livers of deficient animals. 5. In vitamin B12-deficient animals with food intakes below 200g/day some of the liver folates were not completely reduced and some degradation of pteroylpolyglutamates was detected. The latter condition may have been associated with fatty liver. 6. The results are discussed in relation to current theories of vitamin B12–folate interactions.


1967 ◽  
Vol 21 (2) ◽  
pp. 309-314 ◽  
Author(s):  
B. K. Armstrong

1. Urinary excretion of total ether-soluble acids and of methylmalonic acid was studied in rats on vitamin B12-deficient diets with and without a vitamin B12 supplement.2. It was shown that urinary excretion of total ether-soluble acids and methylmalonic acid was increased in vitamin B12-deficient rats and that this increase was somewhat variable between individual animals, males and females, and rats from different litters.3. The increased excretion of these acids could readily be reversed by supplementing the diet with vitamin B12.


Blood ◽  
1956 ◽  
Vol 11 (1) ◽  
pp. 31-43 ◽  
Author(s):  
D. L. MOLLIN ◽  
W. R. PITNEY ◽  
S. J. BAKER ◽  
J. E. BRADLEY

Abstract Intravenous injections of 1.5 µg. of 58Co B12 were given to subjects with normal serum B12 concentrations, to patients with vitamin B12 deficiency and to patients with chronic myelocytic leukemia. The rate of plasma clearance of radioactivity after this dose was slowest in patients with chronic myelocytic leukemia and patients with pernicious anemia in severe relapse. In patients with vitamin B12 deficiency, serum B12 concentrations were estimated microbiologically at frequent intervals after the injection. There was a good correlation between the results obtained by microbiological assay and as calculated from plasma radioactivity. Significant differences were not observed between the urinary excretion of radioactivity by normal subjects and patients with B12 deficiency.


1978 ◽  
Vol 172 (1) ◽  
pp. 115-121 ◽  
Author(s):  
A S Pappu ◽  
P Fatterpaker ◽  
A Sreenivasan

1. The disturbance in 2-methylmalonate metabolism resulting in its increased urinary excretion observed in vitamin E deficiency is not caused by increased formation of methylmalonate from propionate as is evident from the activity of the enzyme propionyl-CoA carboxylase (EC 6.4.1.3), but can be traced to an impairment in the conversion of methylmalonate into succinate by the vitamin B12-requiring enzyme, methylmalonyl-CoA mutase (EC 5.4.99.2) in rat liver. 2. It is shown that the decrease in the activity of methylmalonyl-CoA mutase in vitamin E deficiency is not a consequence of a secondary vitamin B12 deficiency. Peroxidative destruction of the coenzyme in vitamin E deficiency was also ruled out. The results suggest a defect in the conversion of cyanocobalamin into its coenzyme form.


Sign in / Sign up

Export Citation Format

Share Document