scholarly journals The inhibition of mitochondrial calcium transport by lanthanides and Ruthenium Red

1974 ◽  
Vol 140 (2) ◽  
pp. 143-155 ◽  
Author(s):  
Ken C. Reed ◽  
Fyfe L. Bygrave

An EGTA (ethanedioxybis(ethylamine)tetra-acetic acid)-quench technique was developed for measuring initial rates of 45Ca2+ transport by rat liver mitochondria. This method was used in conjunction with studies of Ca2+-stimulated respiration to examine the mechanisms of inhibition of Ca2+ transport by the lanthanides and Ruthenium Red. Ruthenium Red inhibits Ca2+ transport non-competitively with Ki 3×10-8m; there are 0.08nmol of carrier-specific binding sites/mg of protein. The inhibition by La3+ is competitive (Ki=2×10-8m); the concentration of lanthanide-sensitive sites is less than 0.001nmol/mg of protein. A further difference between their modes of action is that lanthanide inhibition diminishes with time whereas that by Ruthenium Red does not. Binding studies showed that both classes of inhibitor bind to a relatively large number of external sites (probably identical with the ‘low-affinity’ Ca2+-binding sites). La3+ competes with Ruthenium Red for most of these sites, but a small fraction of the bound Ruthenium Red (less than 2nmol/mg of protein) is not displaced by La3+. The results are discussed briefly in relation to possible models for a Ca2+ carrier.

FEBS Letters ◽  
1994 ◽  
Vol 351 (2) ◽  
pp. 237-240 ◽  
Author(s):  
Antonia Lanni ◽  
Maria Moreno ◽  
Claus Horst ◽  
Assunta Lombardi ◽  
Goglia Fernando

2002 ◽  
Vol 80 (4) ◽  
pp. 249-257 ◽  
Author(s):  
Hudson de Sousa Buck ◽  
Brice Ongali ◽  
Gaétan Thibault ◽  
Charles J Lindsey ◽  
Réjean Couture

Kinins have been elected to the status of central neuromediators. Their effects are mediated through the activation of two G-protein-coupled receptors, denoted B1 and B2. Functional and binding studies suggested that B1 and B2 receptors are upregulated in the medulla and spinal cord of hypertensive and diabetic rats. The aim of this study was to localize and quantify kinin receptors in post-mortem human medulla obtained from normotensive, hypertensive, and diabetic subjects, using in vitro receptor autoradiography with the radioligands [125I]HPP-HOE140 (B2 receptor) and [125I]HPP[des-Arg10]-HOE140 (B1 receptor). Data showed specific binding sites for B2 receptor (0.4–1.5 fmol/mg tissue) in 11 medullary nuclei from 4 control specimens (paratrigeminal > ambiguus > cuneate, gelatinous layer of the caudal spinal trigeminal nucleus > caudal and interpolar spinal trigeminal, external cuneate, solitary tract > hypoglossal > gracile > inferior olivary nuclei). Increased density of B2 receptor binding sites was observed in seven medullary nuclei of four hypertensive specimens (paratrigeminal > external cuneate > interpolar and caudal spinal trigeminal, gracile, inferior olivary > hypoglossal nuclei). B2 receptor binding sites were seemingly increased in the same medullary nuclei of two diabetic specimens. Specific binding sites for B1 receptor (1.05 and 1.36 fmol/mg tissue) were seen only in the inferior olivary nucleus in two out of the ten studied specimens. The present results support a putative role for kinins in the regulation of autonomic, nociceptive, and motor functions at the level of the human medulla. Evidence is also provided that B2 receptors are upregulated in medullary cardiovascular centers of subjects afflicted of cardiovascular diseases.Key words: bradykinin, hypertension, diabetes, human brain.


1985 ◽  
Vol 63 (6) ◽  
pp. 756-759 ◽  
Author(s):  
B. Bielkiewicz ◽  
D. A. Cook

Several laboratories have reported ligand binding studies using radioactive histamine H1 antagonists to label the H1 receptors in mammalian brain. We have extended these studies to a detailed examination of the binding of [3H]mepyramine to monkey brain and have shown that the distribution is similar to that in man, with specific binding sites being concentrated in the frontal cortex with relatively low binding to the pons and basal ganglia. The binding shows a single saturable component with a KD of about 1 nM and a Hill plot slope close to unity. These observations are the same for all structures tested. Comparison with data from other laboratories suggests that in this species, the histamine receptor is the same as that in peripheral tissues. From Ki values for various ligands and comparison of KD estimates in other species, the receptor seems to be essentially identical to the H1 receptor in central and peripheral tissues of the guinea pig and also to that in human brain. The rat and possibly the dog have minor differences from the monkey in terms of KD values for [3H]mepyramine binding.


2020 ◽  
Vol 48 (16) ◽  
pp. 8914-8926
Author(s):  
Erin E Cutts ◽  
J Barry Egan ◽  
Ian B Dodd ◽  
Keith E Shearwin

Abstract The Apl protein of bacteriophage 186 functions both as an excisionase and as a transcriptional regulator; binding to the phage attachment site (att), and also between the major early phage promoters (pR-pL). Like other recombination directionality factors (RDFs), Apl binding sites are direct repeats spaced one DNA helix turn apart. Here, we use in vitro binding studies with purified Apl and pR-pL DNA to show that Apl binds to multiple sites with high cooperativity, bends the DNA and spreads from specific binding sites into adjacent non-specific DNA; features that are shared with other RDFs. By analysing Apl's repression of pR and pL, and the effect of operator mutants in vivo with a simple mathematical model, we were able to extract estimates of binding energies for single specific and non-specific sites and for Apl cooperativity, revealing that Apl monomers bind to DNA with low sequence specificity but with strong cooperativity between immediate neighbours. This model fit was then independently validated with in vitro data. The model we employed here is a simple but powerful tool that enabled better understanding of the balance between binding affinity and cooperativity required for RDF function. A modelling approach such as this is broadly applicable to other systems.


1987 ◽  
Vol 247 (2) ◽  
pp. 315-320 ◽  
Author(s):  
W E Thomas ◽  
A Crespo-Armas ◽  
J Mowbray

Using different conditions mitochondria from hypothyroid rats can show both unchanged ADP/O ratios and lowered ADP/O ratios without evidence of uncoupling when compared with euthyroid controls. Raising the free Ca2+ concentration to around 25 nM progressively lowered the ADP/O ratio in hypothyroid but not in euthyroid mitochondria. Ruthenium Red did not alter this behaviour and further increasing the Ca2+ concentration to levels below those which stimulate State 3 respiration had no additional effect. Measurements of the free Ca2+ concentration in the mitochondrial suspending medium using a Quin 2 fluorescence assay showed that the mitochondria did not buffer the free Ca2+ at these low concentrations. At 25 nM-free Ca2+, addition of 10-13) M-T3 to hypothyroid mitochondria produced an immediate and significant increase in the ADP/O ratio without altering the free Ca2+ concentration. The hormone effect was maximal by 10(-11) M. The concentration of ATP synthetase can be estimated to lie at about 10 nM in these experiments. Hence it appears possible that a substantial amplification of the hormone signal may have taken place. Comparison with binding studies suggests that T3 may have been maximally stimulating when somewhat less than half its receptor sites had been filled. The possible mechanisms by which this receptor mediated alteration of the ADP/O ratio might be achieved are discussed.


1975 ◽  
Vol 146 (3) ◽  
pp. 601-608 ◽  
Author(s):  
F L Bygrave ◽  
A A Daday ◽  
F A Doy

The EGTA (ethanedioxybis(ethylamine)tetra-acetic acid)-Ruthenium Red-quench technique (Reed & Bygrave, 1974a) was used to measure initial rates of Ca-2+ transport in mitochondria from flight muscle of the blowfly Lucilia cuprina. Evidence is provided for the existence in these mitochondria of a Ca-2+-transport system that has many features in common with that known to exist in rat liver mitochondria. These include requirement for energy, saturation at high concentrations of Ca-2+, a sigmoidal relation between initial rates of Ca-2+ transport and Ca-2+ concentration, a high affinity for free Ca-2+ (Km approx. 5 muM) and high affinity for the Ca-2+-transport inhibitoy, Ruthenium Red (approx. 0.03 nmol of carrier-specific binding-sites/mg of protein; Ki approx. 1.6 × 10- minus 8 M). Controlled respiration can be stimulated by Ca-2+ after a short lag-period provided the incubation medium contains KCl and not sucrose. The ability of Lucilia mitochondria to transport Ca-2+ critically depends on the stage of mitochondrial development; Ca-2+ transport is minimal in mitochondria from pharate adults, is maximal between 0 and 2h post-emergence and thereafter rapidly declines to reach less than 20% of the maximum value by about 2-3 days post-emergence. Respiration in mitochondria from newly emerged flies does not respond to added Ca-2+; that from 3-5-day-old flies is stimulated approx. 50%. Whereas very low concentrations of Ca-2+ inhibit ADP-stimulated respiration and oxidative phosphorylation in mitochondria from newly emerged flies (Ki approx. 60 ng-ions of Ca-2+/mg of protein); much higher concentrations (approx. 200 ng-ion/mg of protein) are needed to inhibit these processes in those from older flies. The potential of this system for studying the function and development of metabolite transport systems in mitochondria is discussed.


1982 ◽  
Vol 60 (12) ◽  
pp. 1551-1555 ◽  
Author(s):  
J. Barabé ◽  
C. Babiuk ◽  
D. Regoli

Binding studies of [3H]des-Arg9-BK have been performed on pieces of rabbit anterior mesenteric veins. Kinetic studies have permitted us to evaluate an affinity constant of 1.04 × 10−7 M, which is not so different from the apparent affinity constant determined by bioassay (1.6 × 10−7 M). Furthermore, inhibition of the binding of [3H]des-Arg9-BK with various kinins results in an order of potency of kinins very similar to that observed in the bioassay. Taken together, these results suggest that we are dealing with binding sites which might be the same as those subserving the biological action of des-Arg9-BK (pharmacological receptors). The preincubation of tissues in Krebs' solution brings about an increase of the specific binding from 0.06 pmol/mg of wet weight at time 0 to 0.75 pmol after 24 h; cycloheximide inhibits this increase for at least 6 h. Veins taken from animals treated with LPS, which have shown an increase in sensitivity compared with veins extracted from untreated animals, have a higher number of specific binding sites for [3H]des-Arg9-BK. The results support the hypothesis that the increased response of tissues to des-Arg9-BK is due to the de novo synthesis of receptors for kinins in some experimental and pathological conditions.


2019 ◽  
Author(s):  
Erin Cutts ◽  
J. Barry Egan ◽  
Ian Dodd ◽  
Keith Shearwin

AbstractThe Apl protein of bacteriophage 186 functions both as an excisionase and as a transcriptional regulator; binding to the phage attachment site (att), and also between the major early phage promoters (pR-pL). Like other recombination directionality factors (RDFs), Apl binding sites are direct repeats spaced one DNA helix turn apart. Here, we use in vitro binding studies with purified Apl and pR-pL DNA to show that Apl binds to multiple sites with high cooperativity, bends the DNA, and spreads from specific binding sites into adjacent non-specific DNA; features that are shared with other RDFs. By analysing Apl’s repression of pR and pL, and the effect of operator mutants in vivo with a simple mathematical model, we were able to extract estimates of binding energies for single specific and non-specific sites and for Apl cooperativity, revealing that Apl monomers bind to DNA with low sequence specificity but with strong cooperativity between immediate neighbours. This model fit was then independently validated with in vitro data. The model we employed here is a simple but powerful tool that enabled better understanding of the balance between binding affinity and cooperativity required for RDF function. A modelling approach such as this is broadly applicable to other systems.


1989 ◽  
Vol 121 (2) ◽  
pp. 223-228 ◽  
Author(s):  
A. Mutvei ◽  
B. Husman ◽  
G. Andersson ◽  
B. D. Nelson

Abstract. T3 and GH have been implicated in the regulation of mitochondrial biogenesis. Since thyroid hormone promotes the synthesis of growth hormone, its control of human mitochondrial biogenesis could arise through a permissive action on GH biosynthesis. This was studied in hypophysectomized rats treated with T3 and/or human GH by the continuous infusion of hormone for 6 days from mini-infusion pumps implanted sc. Increases in mitochondrial respiration, enzyme activites, and protein synthesis were found in isolated liver mitochondria from rats receiving T3. In contrast, GH alone had no effect, nor did it increase the response to T3. Since it has been argued that mitochondrial biogenesis results from a direct interaction (binding) of GH with mitochondria, GH-specific binding sites were measured with 125I-bGH, a specific somatogenic receptor ligand, in isolated mitochondrial membranes in vitro. In addition, the intracellular endocytic uptake of 125I-bGH injected in vivo was compared in purified subcellular membrane fractions and mitochondria. No evidence in favour of specific GH interaction on mitochondrial membranes was found by either test. It is concluded that T3 exerts a direct, rather than permissive, effect on mitochondrial biogenesis, and that high affinity binding sites for GH are not present in rat liver mitochondria.


Sign in / Sign up

Export Citation Format

Share Document