scholarly journals Occurrence of an endo-1,3-β-glucanase in culture fluids of the yeast Candida utilis. Purification and characterization of the enzyme activity

1979 ◽  
Vol 177 (1) ◽  
pp. 107-114 ◽  
Author(s):  
T G Villa ◽  
V Notario ◽  
J R Villanueva

The endo-1,3-beta-glucanase (EC 3.2.1.6) secreted into the culture medium by cells of Candida utilis was isolated and purified to homogeneity on polyacrylamide-gel electrophoresis and in ultracentrifugation studies (s20,w = 1.97S). The purified enzyme represented only 0.001% of the total 1,3-beta-glucanase activity, the remainder being due to an exo-1,3-beta-glucanase enzyme, and behaved as an acidic glycoprotein (pI 3.3) in isoelectric-focusing experiments. The mol.wt. was estimated to be 21 000 by gel filtration and polyacrylamide-gel electrophoresis. Studies on the hydrolysis of different substrates showed that the enzyme was only able to break down (1 leads to 3)-beta-linkages, by an endo-splitting mechanism. Glucono-delta-lactone, D-glucoronolactone and heavy metal ions such as Hg2+ were inhibitors of the enzyme activity. The function of this endo-beta-glucanase in C. utilis is discussed.

1976 ◽  
Vol 159 (3) ◽  
pp. 555-562 ◽  
Author(s):  
V Notario ◽  
T G Villa ◽  
J R Villanueva

β-Glucanase present in cell-free extracts from Candida utilis was isolated and purified 562-fold by procedures that include adsorption on DEAE-Sephadex A-50 and filtration through columns of Sephadex G-50, G-100 and G-200, Bio-Gel P-10, and Concanavalin A-Sepharose 4B. The purified enzyme appeared homogeneous on polyacrylamide-gel electrophoresis and in ultracentrifugation studies (S20,w = 1.74S). The enzyme behaved as an acidic glycoprotein (pI4.1) with 68% carbohydrate and a high content of acidic amino acids. The mol.wt. was estimated to be 20000 from gel filtration and polyacrylamide-gel electrophoresis and 36000 from sedimentation experiments. Studies on the hydrolysis of different substrates showed that the enzyme is an unspecific β-glucanase able to break down both (1 leads to 3)-eta- and (1 leads to 6)-β-linkages by an exo-splitting mechanism. Glucono-δ-lactone, Zn2+ and Hg2+ inhibited the enzyme activity.


1975 ◽  
Vol 147 (2) ◽  
pp. 205-214 ◽  
Author(s):  
E D Adamson ◽  
S E Ayers ◽  
Z A Deussen ◽  
C F Graham

The solubilization of 80% of the acetylcholinesterase activity of mouse brain was performed by repeated 2h incubations of homogenates at 37 degrees C in an aqueous medium. Analysis of the soluble extract by gel filtration on Sephadex G-200 showed that up to 80% of the enzyme activity was eluted in a peak which was estimated to consist of molecules of about 74000mol.wt. This peak was called the monomer form of the enzyme. After 3 days at 4 degrees C, the soluble extract was re-analysed and was eluted from the column in four peaks of about 74000, 155000, 360000 and 720000 mol.wt. Since the total activity of the enzyme in these peaks was the same as that in the predominantly monomer elution profile of fresh enzyme, we concluded that the monomer had aggregated, possibly into dimers, tetramers and octomers. Extracts of the enzyme were analysed by polyacrylamide-gel electrophoresis and the resulting multiple bands of enzyme activity on gels were shown to separate according to their molecular sizes, that is by molecular sieving. All these forms had similar susceptibilities to the inhibitors eserine, tetra-isopropyl pyrophosphoramide and compound BW 284c51 [1,5-bis-(4-allyldimethylammoniumphenyl)pentan-3-one dibromide]. Thus the forms of the enzyme in mouse brain which can be detected by gel filtration and polyacrylamide-gel electrophoresis may all be related to a single low-molecular-weight form which aggregates during storage. This supports similar suggestions made for the enzyme in other locations.


1985 ◽  
Vol 31 (2) ◽  
pp. 149-153 ◽  
Author(s):  
Resham S. Bhella ◽  
Illimar Altosaar

Alpha-amylase was purified from the extracellular culture medium of Aspergillus awamori by means of ethanol precipitation. Sephacryl-200 gel filtration and anion-exchange chromatography on Dowex (AG1-X4) resin. The enzyme preparation was found to be homogeneous by means of sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The purified enzyme had a molecular weight of 54 000 ± 2 500 and its isoelectric point was pH 4.2. The enzyme was found to be most active between pH 4.8 and 5.0 and was stable between pH 3.5 and 6.5. The optimal temperature for the enzyme activity was around 50 °C and the enzyme was stable for at least 1 h up to 45 °C retaining more than 80% of its original activity. The Km (37 °C, pH 5.3) for starch hydrolysis was 1.0 g∙L−1 and maltose inhibited the enzyme activity uncompetitively with a K1 value of 20.05 g∙L−1


2003 ◽  
Vol 69 (2) ◽  
pp. 980-986 ◽  
Author(s):  
Dae Heoun Baek ◽  
Seok-Joon Kwon ◽  
Seung-Pyo Hong ◽  
Mi-Sun Kwak ◽  
Mi-Hwa Lee ◽  
...  

ABSTRACT A gene encoding a new thermostable d-stereospecific alanine amidase from the thermophile Brevibacillus borstelensis BCS-1 was cloned and sequenced. The molecular mass of the purified enzyme was estimated to be 199 kDa after gel filtration chromatography and about 30 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the enzyme could be composed of a hexamer with identical subunits. The purified enzyme exhibited strong amidase activity towards d-amino acid-containing aromatic, aliphatic, and branched amino acid amides yet exhibited no enzyme activity towards l-amino acid amides, d-amino acid-containing peptides, and NH2-terminally protected amino acid amides. The optimum temperature and pH for the enzyme activity were 85°C and 9.0, respectively. The enzyme remained stable within a broad pH range from 7.0 to 10.0. The enzyme was inhibited by dithiothreitol, 2-mercaptoethanol, and EDTA yet was strongly activated by Co2+ and Mn2+. The k cat/Km for d-alaninamide was measured as 544.4 ± 5.5 mM−1 min−1 at 50°C with 1 mM Co2+.


1987 ◽  
Vol 248 (1) ◽  
pp. 139-144 ◽  
Author(s):  
E R Sjoberg ◽  
J D Hatton ◽  
J S O'Brien

We describe here the purification and characterization of a form of acid lipase from human liver (designated ALII), which differed from the more abundant Mr-29000 form (ALI). ALII was solubilized from frozen human liver with Triton X-100 and purified 8500-fold by chromatography over concanavalin A-sepharose, CM-cellulose and finally h.p.l.c. over a Mono S column. ALII migrated as a single band on polyacrylamide-gel electrophoresis in both the presence and the absence of SDS. The Mr of ALII was estimated to be 58,500 by SDS/polyacrylamide-gel electrophoresis. Gel filtration on Sephacryl S-200 gave an apparent Mr of 69,000. 4-Methylumbelliferyl (4MU) palmitate, cholesterol oleate and triolein were substrates for ALII, with apparent Vmax values of 5000, 1100 and 2500 nmol/min per mg respectively and Km values of 1.0, 1.5 and 1.8 mM respectively. Cholesterol oleate and triolein were hydrolysed optimally by ALII at pH 4.5, whereas 4MU palmitate was hydrolysed optimally at pH 5.3. Antisera were raised against ALI and ALII and, on immunoblot analysis, no antigenic similarity was observed between ALI and ALII. Cellulose acetate electrophoresis followed by reaction with 4MU palmitate revealed two forms of lipase, corresponding to ALI and ALII. The two enzymes were also separated by hydrophobic chromatography. The activity of ALII was stimulated by several proteins and was partially inhibited by millimolar concentrations of NaCl, CaCl2 and MgSO4.


1999 ◽  
Vol 65 (7) ◽  
pp. 2907-2911 ◽  
Author(s):  
Karine Berthelot ◽  
Francis M. Delmotte

ABSTRACT A novel α-glucosidase with an apparent subunit mass of 59 ± 0.5 kDa was purified from protein extracts of Rhizobium sp. strain USDA 4280, a nodulating strain of black locust (Robinia pseudoacacia L), and characterized. After purification to homogeneity (475-fold; yield, 18%) by ammonium sulfate precipitation, cation-exchange chromatography, hydrophobic chromatography, dye chromatography, and gel filtration, this enzyme had a pI of 4.75 ± 0.05. The enzyme activity was optimal at pH 6.0 to 6.5 and 35°C. The activity increased in the presence of NH4 +and K+ ions but was inhibited by Cu2+, Ag+, Hg+, and Fe2+ ions and by various phenyl, phenol, and flavonoid derivatives. Native enzyme activity was revealed by native gel electrophoresis and isoelectrofocusing-polyacrylamide gel electrophoresis with fluorescence detection in which 4-methylumbelliferyl α-glucoside was the fluorogenic substrate. The enzyme was more active with α-glucosides substituted with aromatic aglycones than with oligosaccharides. This α-glucosidase exhibited Michaelis-Menten kinetics with 4-methylumbelliferyl α-d-glucopyranoside (Km , 0.141 μM; V max, 6.79 μmol min−1 mg−1) and withp-nitrophenyl α-d-glucopyranoside (Km , 0.037 μM; V max, 2.92 μmol min−1 mg−1). Maltose, trehalose, and sucrose were also hydrolyzed by this enzyme.


1988 ◽  
Vol 253 (1) ◽  
pp. 275-279 ◽  
Author(s):  
E Smythe ◽  
D C Williams

Uroporphyrinogen III synthase purified from rat liver is a monomer of Mr 36,000 by gel filtration and 28,000 by SDS/polyacrylamide-gel electrophoresis. The enzyme exists in two interconvertible forms separable on h.p.l.c. Both forms of the enzyme could be renatured with full activity after SDS/polyacrylamide-gel electrophoresis, demonstrating the absence of a reversibly bound cofactor. The enzyme activity could be inhibited by pyridoxal 5′-phosphate in the absence and in the presence of NaBH4, consistent with (an) essential lysine residue(s). The enzyme thus shows great similarity to that from Euglena gracilis.


1979 ◽  
Author(s):  
M Ribieto ◽  
J Elion ◽  
D Labie ◽  
F Josso

For the purification of the abnormal prothrombin (Pt Metz), advantage has been taken of the existence in the family of three siblings who, being double heterozygotes for Pt Metz and a hypoprothrombinemia, have no normal Pt. Purification procedures included barium citrate adsorption and chromatography on DEAE Sephadex as for normal Pt. As opposed to some other variants (Pt Barcelona and Madrid), Pt Metz elutes as a single symetrical peak. By SDS polyacrylamide gel electrophoresis, this material is homogeneous and appears to have the same molecular weight as normal Pt. Comigration of normal and abnormal Pt in the absence of SDS, shows a double band suggesting an abnormal charge for the variant. Pt Metz exhibits an identity reaction with the control by double immunodiffusion. Upon activation by factor Xa, Pt Metz can generate amydolytic activity on Bz-Phe-Val-Arg-pNa (S2160), but only a very low clotting activity. Clear abnormalities are observed in the cleavage pattern of Pt Metz when monitored by SDS gel electrophoresis. The main feature are the accumulation of prethrombin l (Pl) and the appearance of abnormal intermediates migrating faster than Pl.


1988 ◽  
Vol 254 (2) ◽  
pp. 419-426 ◽  
Author(s):  
P M Wiest ◽  
E J Tisdale ◽  
W L Roberts ◽  
T L Rosenberry ◽  
A A F Mahmoud ◽  
...  

Biosynthetic labelling experiments with cercariae and schistosomula of the multicellular parasitic trematode Schistosoma mansoni were performed to determine whether [3H]palmitate or [3H]ethanolamine was incorporated into proteins. Parasites incorporated [3H]palmitate into numerous proteins, as judged by SDS/polyacrylamide-gel electrophoresis and fluorography. The radiolabel was resistant to extraction with chloroform, but sensitive to alkaline hydrolysis, indicating the presence of an ester bond. Further investigation of the major 22 kDa [3H]palmitate-labelled species showed that the label could be recovered in a Pronase fragment which bound detergent and had an apparent molecular mass of 1200 Da as determined by gel filtration on Sephadex LH-20. Schistosomula incubated with [3H]ethanolamine for up to 24 h incorporated this precursor into several proteins; labelled Pronase fragments recovered from the three most intensely labelled proteins were hydrophilic and had a molecular mass of approx. 200 Da. Furthermore, reductive methylation of such fragments showed that the [3H]ethanolamine bears a free amino group, indicating the lack of an amide linkage. We also evaluated the effect of phosphatidylinositol-specific phospholipase C from Staphylococcus aureus: [3H]palmitate-labelled proteins of schistosomula and surface-iodinated proteins were resistant to hydrolysis with this enzyme. In conclusion, [3H]palmitate and [3H]ethanolamine are incorporated into distinct proteins of cercariae and schistosomula which do not bear glycophospholipid anchors. The [3H]ethanolamine-labelled proteins represent a novel variety of protein modification.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Priyanka Priyadarshi ◽  
Piyush Dravid ◽  
Inayat Hussain Sheikh ◽  
Sunita Saxena ◽  
Ashish Tandon ◽  
...  

AbstractFilarial parasites are complex mixtures of antigenic proteins and characterization of these antigenic molecules is essential to identify the diagnostically important filaria-specific antigens. In the present study, we have fractionated the somatic extracts from adults of


Sign in / Sign up

Export Citation Format

Share Document