scholarly journals The interaction between methanol dehydrogenase and the autoreducible cytochromes c of the facultative methylotroph Pseudomonas AM1

1980 ◽  
Vol 190 (2) ◽  
pp. 481-484 ◽  
Author(s):  
D T O'Keeffe ◽  
C Anthony

Cytochromes cH and cL were autoreduced at high pH (pK greater than 10) and the autoreduced cytochromes reacted with CO. The autoreduction was first-order with respect to oxidized cytochrome c and was reversible by lowering the pH. Pure methanol dehydrogenase reduced cytochrome c (in the absence of methanol) by lowering the pK for autoreduction to less than 8.5. A mechanism is proposed for the autoreduction of cytochrome c and its involvement in the reaction with methanol dehydrogenase.

1988 ◽  
Vol 251 (2) ◽  
pp. 467-474 ◽  
Author(s):  
M Dijkstra ◽  
J Frank ◽  
J E van Wielink ◽  
J A Duine

Hyphomicrobium X, grown on methanol with O2 or nitrate as electron acceptor, contains two major soluble cytochromes c. These were isolated in electrophoretically homogeneous form. They are related to cytochromes c already described for other methylotrophic bacteria and designated cytochromes cH and cL (properties indicated in that order) in view of the following characteristics: absorption maxima of the reduced forms (414, 520 and 551 nm and 414, 520 and 550 nm); molar absorption coefficients of the alpha-bands (23,700 M-1.cm-1 and 21,600 M-1.cm-1); maxima of the alpha-bands (no splitting) at 77 K (547.6 nm and 548.5 nm); Mr values of the native proteins (15,000 and 19,500); pI values (7.4 and 7.5, and 4.3); midpoint potentials at pH 7.0 (+292 mV and +270 mV). Both were monomers containing 1 haem c group per protein molecule, the oxidized forms binding cyanide at high pH. Autoreduction also occurred at high pH but at a rate significantly lower than that reported for other ferricytochromes c. On the other hand, the reverse situation applies to the reduction of ferricytochrome cL by reduced methanol dehydrogenase, the reduction occurring instantaneously at pH 7 but much more slowly at pH 9 (ferricytochrome cH was reduced at a 7-fold lower rate, but the rates at pH 7 and 9 were similar). Insignificant reduction was observed with cyclopropanol-inactivated enzyme or with enzyme in the presence of EDTA. In view of the dissimilarities, it is concluded that different mechanisms operate in the autoreduction of ferricytochrome cL and in its reduction by reduced methanol dehydrogenase.


1982 ◽  
Vol 207 (1) ◽  
pp. 161-165 ◽  
Author(s):  
M Beardmore-Gray ◽  
D T O'Keeffe ◽  
C Anthony

The two types of soluble cytochrome c (cytochrome cH and cytochrome cL) found in methylotrophs are completely distinct proteins; one type is not a dimer or degradation product of the other. Free thiol groups are probably not involved in the unusually rapid autoreduction of the cytochromes at high pH. The axial ligands to the haem iron, histidine and methionine, are the same as in other low-spin cytochromes c. The methionine ligand is displaced at high pH by an alternative strong-field ligand. This displacement does not occur on reduction of cytochrome cL by methanol dehydrogenase, but this does not rule out the possibility that the autoreduction mechanism is involved in the interaction of the dehydrogenase and cytochrome c.


1991 ◽  
Vol 56 (2) ◽  
pp. 478-490 ◽  
Author(s):  
Joaquin F. Perez-Benito ◽  
Conchita Arias

The reaction between horse-heart cytochrome c and ascorbic acid has been investigated in the pH range 5.5 – 7.1 and at 10.0 – 25.0 °C. The rate shows a first-order dependence on the concentration of cytochrome c, it increases in a non-linear way as the concentration of ascorbic acid increases, it increases markedly with increasing pH and, provided that the ionic strength of the medium is high enough, it fulfills the Arrhenius equation. The apparent activation energy increases as the pH of the solution increases. The results have been explained by means of a mechanism that includes the existence of an equilibrium between two forms (acidic and basic) of oxidized cytochrome c: cyt-H+ -Fe3+ + OH- cyt -Fe3+ + H2O, whose equilibrium constant is (6.7 ± 1.4). 108 at 25.0 °C, the acidic form being more reducible than the basic one. It is suggested that there is a linkage of hydrogenascorbate ion to both forms of cytochrome c previous to the redox reactions. Two possibilities for the oxidant-reductant linkage (binding and adsorption) are discussed in detail.


1979 ◽  
Vol 254 (23) ◽  
pp. 11973-11981 ◽  
Author(s):  
J.K. Dethmers ◽  
S. Ferguson-Miller ◽  
E. Margoliash
Keyword(s):  

1977 ◽  
Vol 252 (2) ◽  
pp. 574-582 ◽  
Author(s):  
D L Brautigan ◽  
B A Feinberg ◽  
B M Hoffman ◽  
E Margoliash ◽  
J Preisach ◽  
...  

1973 ◽  
Vol 131 (3) ◽  
pp. 485-498 ◽  
Author(s):  
R. P. Ambler ◽  
Margaret Wynn

The amino acid sequences of the cytochromes c-551 from three species of Pseudomonas have been determined. Each resembles the protein from Pseudomonas strain P6009 (now known to be Pseudomonas aeruginosa, not Pseudomonas fluorescens) in containing 82 amino acids in a single peptide chain, with a haem group covalently attached to cysteine residues 12 and 15. In all four sequences 43 residues are identical. Although by bacteriological criteria the organisms are closely related, the differences between pairs of sequences range from 22% to 39%. These values should be compared with the differences in the sequence of mitochondrial cytochrome c between mammals and amphibians (about 18%) or between mammals and insects (about 33%). Detailed evidence for the amino acid sequences of the proteins has been deposited as Supplementary Publication SUP 50015 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973), 131, 5.


1982 ◽  
Vol 60 (6) ◽  
pp. 613-623 ◽  
Author(s):  
P. Nicholls ◽  
J.-K. Kim

Anomalies both kinetic and equilibrium in nature are described for the inhibition of cytochrome c oxidase activity by sulphide in the isolated enzyme and in submitochondrial particles. These anomalies are related to the involvement of more than 1 mol of sulphide in the blockage of one cytochrome aa3 centre. Sulphide reduces resting cytochrome a3, a reaction that results in oxygen uptake and the loss of a sulphide molecule. Sulphide can also reduce cytochromes c and a; in the former case, a part of the one-equivalent oxidation product, presumed to be the SH∙ radical, reacts with oxygen. Such oxygen uptake is also seen under aerobic conditions when ferricyanide reacts with sulphide. Three phases are identified in the inhibitory interaction of sulphide with the cytochrome c oxidase enzyme itself: an initial rapid reaction involving sulphide oxidation, oxygen uptake, and conversion of cytochrome aa3 into the low-spin "oxyferri" form; a subsequent step in which sulphide reduces cytochrome a; and the final inhibitory step in which a third molecule of sulphide binds the a3 iron centre in the cytochrome [Formula: see text] (oxy) species to give cytochrome [Formula: see text]. The initial events parallel some of the events in the interaction of the cytochrome c – cytochrome aa3 system with monothiols; the final inhibitory event resembles that with cyanide.


1969 ◽  
Vol 114 (4) ◽  
pp. 793-799 ◽  
Author(s):  
O. T. G. Jones

Illumination of chromatophore preparations from Rhodopseudomonas spheroides causes the oxidation of a cytochrome c and a slight oxidation of a cytochrome b with a maximum at 560nm. When illuminated in the presence of antimycin A the oxidation of cytochrome c was more pronounced and cytochrome b560 was reduced; the dark oxidation of cytochrome b560 was biphasic in the presence of succinate, but not in the presence of NADH, a less effective reductant. Split-beam spectroscopy showed that, in addition to the reduction of cytochrome b560, another pigment with maxima at 565 and 537nm. was reduced and was more rapidly oxidized in the dark than cytochrome b560. This pigment, tentatively identified as cytochrome b565, was also detected in spectra at 77°k, after brief illumination at room temperature; the maxima at 77°k were at 562 and 536nm. In the absence of antimycin A, light caused a transient reduction of cytochrome b565 and an oxidation of cytochrome b560. Dark oxidation of b565 was rapid, even in the presence of antimycin A and succinate. Difference spectra, at 77°k, of ascorbate-reduced minus succinate-reduced chromatophores or of anaerobic succinate-reduced minus aerobic succinate-reduced chromatophores suggested that two cytochromes c were present, with maxima at 547 and 549nm. When chromatophores frozen at 77°k were illuminated both these cytochromes c were oxidized, indicating a close association with the photochemical reaction centre. A scheme involving two reaction centres is proposed to explain these results.


1984 ◽  
Vol 217 (3) ◽  
pp. 595-599 ◽  
Author(s):  
C J A Wallace

The biological consequences of acetimidylation of all 19 epsilon-amino groups of horse cytochrome c are a slight decrease in both the redox potential of the protein and its ability to stimulate oxygen uptake in the cytochrome c-depleted-mitochondria assay. Examination of a number of specific partially acetimidylated analogues and acetimidylated cytochromes c of other species has shown that the changes in biological properties, which are associated with a slight structural change as monitored by n.m.r. spectroscopy [Boswell, Moore, Williams, Harris, Wallace, Bocieck & Welti (1983) Biochem. J. 213, 679-686], appear to stem from modification of residues in a restricted region of the sequence. The failure of the redox potential of Saccharomyces cerevisae cytochrome c to be affected by acetimidylation suggests that it is lysine-53, absent from that species, that is the sensitive residue.


Sign in / Sign up

Export Citation Format

Share Document