scholarly journals Effects of inhibitors of spermidine and spermine synthesis on polyamine concentrations and growth of transformed mouse fibroblasts

1981 ◽  
Vol 194 (1) ◽  
pp. 79-89 ◽  
Author(s):  
Anthony E. Pegg ◽  
Ronald T. Borchardt ◽  
James K. Coward

1. A number of compounds known to inhibit polyamine biosynthesis at various steps in the biosynthetic pathway were tested for their ability to inhibit growth and decrease polyamine concentrations in virally transformed mouse fibroblasts (SV-3T3 cells). 2. Virtually complete inhibition of growth was produced by the inhibitors of ornithine decarboxylase α-methylornithine and α-difluoromethylornithine and by the inhibitors of S-adenosylmethionine decarboxylase 1,1′-[(methylethanediylidene)dinitrilo]diguanidine and 1,1′-[(methylethanediylidene)dinitrilo]bis-(3-aminoguanidine). The former inhibitors decreased putrescine and spermidine contents in the cells to very low values, whereas the latter substantially increased putrescine but decreased spermidine concentrations. The inhibitory effects of all of these inhibitors on cell growth could be prevented by the addition of spermidine, suggesting that spermidine depletion is the underlying cause of their inhibition of growth. 3. α-Difluoromethylornithine, which is an irreversible inhibitor of ornithine decarboxylase, was a more potent inhibitor of growth and polyamine production (depleting spermidine almost completely and spermine significantly) than α-methylornithine, which is a competitive inhibitor. This was not the case with the inhibitors of S-adenosylmethionine decarboxylase where 1,1′-[(methylethanediylidene)dinitrilo]diguanidine, a reversible inhibitor, was more active than 1,1′-[(methylethanediylidene)dinitrilo]bis-(3-aminoguanidine), an irreversible inhibitor. It is suggested that this effect may be due to the lesser uptake and/or greater chemical reactivity of the latter compound. 4. Various nucleoside derivatives of S-adenosylhomocysteine that inhibited spermidine synthase in vitro did not have significant inhibitory action against polyamine accumulation in the cell. These compounds, which included S-adenosylhomocysteine sulphone, decarboxylated S-adenosylhomocysteine sulphone, decarboxylated S-adenosylhomocysteine sulphoxide and S-adenosyl-4-thio-butyric acid sulphone did not inhibit cell growth or polyamine content until cytotoxic concentrations were added. 5. 5′-Methylthioadenosine, 5′-isobutylthioadenosine and 5′-methylthiotubercidin, which inhibit aminopropyltransferase activity in vitro, all inhibited cell growth and decreased spermidine content. Although these compounds were most active against spermine synthase in vitro, they acted in the cell primarily to decrease spermidine content. Cell growth could not be restored to normal values by addition of spermidine, suggesting that these nucleosides have another inhibitory action towards cellular proliferation. 6. 5′-Methylthioadenosine and 5′-isobutylthioadenosine are degraded by a phosphorylase present in SV3T3 cells, yielding 5-methylthioribose-1-phosphate and 5-isobutylthioribose-1-phosphate respectively, and adenine. This degradation appears to decrease the inhibitory action towards cell growth, suggesting that the nucleosides themselves are exerting the inhibitory action. 5′-Methylthiotubercidin, which is not a substrate for the phosphorylase and is a competitive inhibitor of it, was the most active of these nucleosides in inhibiting cell growth and spermidine content. 5′-Methylthiotubercidin and α-difluoromethylornithine had additive effects on retarding cell growth, but not on cellular spermine accumulation, also suggesting that the primary growth-inhibiting action of the nucleoside was not on polyamine production. 7. These results support the concept that 5′-methylthioadenosine phosphorylase plays an important role in permitting cell growth to continue by preventing the build-up of inhibitory intracellular concentrations of 5′-methylthioadenosine.

1981 ◽  
Vol 196 (3) ◽  
pp. 733-738 ◽  
Author(s):  
H Korpela ◽  
E Hölttä ◽  
T Hovi ◽  
J Jänne

The stimulation of lymphocyte ornithine decarboxylase and adenosylmethionine decarboxylase produced by phytohaemagglutinin was accompanied by an equally marked, but delayed, stimulation of spermidine synthase, which is not commonly considered as an inducible enzyme. In contrast with the marked stimulation of these biosynthetic enzymes, less marked changes were observed in the biodegradative enzymes of polyamines in response to phytohaemagglutinin. Diamine oxidase activity was undetectable during all stages of the transformation. The activity of polyamine oxidase remained either constant or was slightly decreased several days after addition of the mitogen. The activity of polyamine acetylase (employing all the natural polyamines as substrates) distinctly increased both in the cytosolic and crude nuclear preparations of the cells during later stages of mitogen activation. Difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, although powerfully inhibiting ornithine decarboxylase, produced a gradual enhancement of adenosylmethionine decarboxylase activity during lymphocyte activation, without influencing the activities of the two propylamine transferases (spermidine synthase and spermine synthase).


2000 ◽  
Vol 346 (3) ◽  
pp. 699-704 ◽  
Author(s):  
Jonas NILSSON ◽  
Birgitta GRAHN ◽  
Olle HEBY

Ornithine decarboxylase (ODC) catalyses the first step in the synthesis of the polyamines putrescine, spermidine and spermine. The polyamines are essential for cell growth, but at elevated levels they may be tumorigenic, toxic, or may induce apoptosis. Therefore, ODC activity is highly regulated. It is induced when cells are stimulated to grow, and it is subjected to feedback inhibition by the polyamines. By causing ribosomal frameshifting, polyamines induce the synthesis of antizyme, a 23-kDa protein, which binds to ODC, inhibits its activity and promotes its degradation by the 26 S proteasome. Antizyme, in turn, is inhibited by antizyme inhibitor (AZI). We describe the cloning of a mouse AZI cDNA, encoding a protein with high homology to mouse ODC. Using purified recombinant proteins, we show that AZI (which has no ODC activity) can release enzymically active ODC from antizyme suppression in vitro. We also show that ODC reactivation takes place in mouse fibroblasts upon transient transfection with an AZI-expressing plasmid construct. Finally we demonstrate that the AZI mRNA content of mouse fibroblasts increases significantly within an hour of growth stimulation, i.e. much earlier than ODC transcripts. Our results indicate that induction of AZI synthesis may represent a means of rescuing ODC molecules that have been inactivated and tagged for degradation by antizyme, when culture conditions improve and polyamine production is needed for cell growth and proliferation.


1993 ◽  
Vol 291 (1) ◽  
pp. 131-137 ◽  
Author(s):  
L Albanese ◽  
R J Bergeron ◽  
A E Pegg

N1N12-Bis(ethyl)spermine (BESM) and related compounds are powerful inhibitors of cell growth that may have potential as anti-neoplastic agents [Bergeron, Neims, McManis, Hawthorne, Vinson, Bortell and Ingeno (1988) J. Med. Chem. 31, 1183-1190]. The mechanism by which these compounds bring about their effects was investigated by using variant cell lines in which processes thought to be altered by these agents are perturbed. Comparisons between the response of these cells and of their parental equivalents to BESM, N1N11-bis(ethyl)norspermine, N1N14-bis(ethyl)homospermine and N1N8-bis(ethyl)spermidine were then made. It was found that D-R cells, an L1210-derived line that over-expresses ornithine decarboxylase, were not resistant to these compounds. This indicates that the decrease in ornithine decarboxylase is not critical for the action of the compounds on cell growth. Furthermore, although polyamine levels were decreased in the D-R cells, the content was not totally depleted, indicating that such depletion is also not essential for the anti-proliferative effect. Two cell lines lacking mitochondrial DNA (human 143B206 cells and chicken DU3 cells) did not differ in sensitivity to BESM from their parental 143BTK- and DU24 cells. Furthermore, the inhibition of respiration in L1210 cells in response to BESM developed more slowly than the inhibition of growth. Thus it appears that the inhibitions of mitochondrial DNA synthesis and of mitochondrial respiration are also not primary factors in the anti-proliferative effects of these polyamine analogues. The inhibition of growth did, however, correlate with the intracellular accumulation of the analogues. It appears that the bis(ethyl)polyamine derivatives act by binding to intracellular target molecules and preventing macromolecular synthesis. The decline in normal polyamines may facilitate such binding, but is not essential for growth arrest.


1977 ◽  
Vol 166 (1) ◽  
pp. 81-88 ◽  
Author(s):  
A E Pegg

1. Polyamine concentrations were decreased in rats fed on a diet deficient in vitamin B-6. 2. Ornithine decarboxylase activity was decreased by vitamin B-6 deficiency when assayed in tissue extracts without addition of pyridoxal phosphate, but was greater than in control extracts when pyridoxal phosphate was present in saturating amounts. 3. In contrast, the activity of S-adenosylmethionine decarboxylase was not enhanced by pyridoxal phosphate addition even when dialysed extracts were prepared from tissues of young rats suckled by mothers fed on the vitamin B-6-deficient diet. 4. S-Adenosylmethionine decarboxylase activities were increased by administration of methylglyoxal bis(guanylhydrazone) (1,1′-[(methylethanediylidine)dinitrilo]diguanidine) to similar extents in both control and vitamin B-6-deficient animals. 5. The spectrum of highly purified liver S-adenosylmethionine decarboxylase did not indicate the presence of pyridoxal phosphate. After inactivation of the enzyme by reaction with NaB3H4, radioactivity was incorporated into the enzyme, but was not present as a reduced derivative of pyridoxal phosphate. 6. It is concluded that the decreased concentrations of polyamines in rats fed on a diet containing vitamin B-6 may be due to decreased activity or ornithine decarboxylase or may be caused by an unknown mechanism responding to growth retardation produced by the vitamin deficiency. In either case, measurements of S-adenosylmethionine decarboxylase and ornithine decarboxylase activity under optimum conditions in vitro do not correlate with the polyamine concentrations in vivo.


Blood ◽  
1983 ◽  
Vol 61 (4) ◽  
pp. 740-745 ◽  
Author(s):  
E Niskanen ◽  
A Kallio ◽  
PP McCann ◽  
DG Baker

Abstract Under the influence of a selective irreversible inhibitor of ornithine decarboxylase (ODC), DL-alpha-difluoromethylornithine (DFMO), early hematopoiesis was enhanced. In the bone marrow, the absolute number of cells that give rise to spleen colonies in lethally irradiated mice (CFU-S), granulocytic colonies in diffusion chambers in mice (CFU-DG), and granulocyte-monocyte colonies in agar in vitro (CFU-C) was increased 2–4 fold. This could be abrogated by administration of putrescine, confirming the association of the stimulatory effect with polyamine biosynthesis most likely via depression of ornithine decarboxylase activity and subsequent synthesis of putrescine. Analysis of cell cycle characteristics by 3H-TdR suicide technique demonstrated that the proportion of CFU-S, CFU-DG, and CFU-C in S-phase was significantly increased. Additionally, the stimulatory effect was reflected by enhanced colony formation in diffusion chambers implanted intraperitoneally in mice receiving DFMO. This could also be eliminated by treatment of the host animal with putrescine, again suggesting that polyamine biosynthesis plays an important role at the early stages of hematopoiesis in vivo. Effect of DFMO on colony formation in vitro (CFU- C) was inhibitory and not reversible with putrescine. It could be partially eliminated by aminoguanidine, which neutralizes diamine oxidase present in fetal calf serum used in the CFU-C assay. These data suggest that the effect of DFMO in vitro was nonspecific.


1989 ◽  
Vol 259 (2) ◽  
pp. 325-331 ◽  
Author(s):  
D L Kramer ◽  
R M Khomutov ◽  
Y V Bukin ◽  
A R Khomutov ◽  
C W Porter

S-(5'-Deoxy-5'-adenosyl)methylthioethylhydroxylamine (AMA) is an irreversible inhibitor of S-adenosylmethionine (AdoMet) decarboxylase, which is designed to bind covalently the pyruvate residue at the enzyme active site. In the present study the cellular effects of AMA were characterized for the first time in cultured L1210 leukaemia cells. At the approximate IC50 (concn. giving 50% inhibition; 100 microM), AMA decreased spermidine and spermine by more than 80% at 48 h while increasing putrescine more than 10-fold. As an indication of enzyme specificity, growth inhibition was fully prevented with exogenous spermidine. When compared with the irreversible inhibitor of ornithine decarboxylase, alpha-difluoromethylornithine (DFMO), at similar growth-inhibitory concentrations, AMA was less cytotoxic, as determined by colony-formation efficiency. In combination with AMA, DFMO eliminated the rise in putrescine and decreased growth in an additive manner. The near-total depletion of intracellular polyamine pools achieved with the drug combination provided an opportunity to examine the relative abilities of individual polyamines to support growth and viability. Of the three exogenously supplied polyamines, only spermidine fully sustained cell growth and viability at control values during incubations totalling 120 h. By contrast, spermine supported growth at 23% of control and viability at 8%. Putrescine was similarly ineffective, supporting growth at 13% of control and viability at 7%. The data indicate that, in L1210 cells, spermidine is apparently the preferred polyamine in growth-related functions and is capable of fully supporting cell growth by itself. However, because spermine and putrescine can also support growth to some extent, maximum interference with growth and viability is best achieved by strategies which deplete all three polyamine pools.


1977 ◽  
Vol 166 (3) ◽  
pp. 635-637 ◽  
Author(s):  
L Stevens ◽  
I M McKinnon

1,4-Diaminobutanone, a competitive inhibitor of ornithine decarboxylase in Aspergillus nidulans, is able to increase the half-life of this enzyme and thus stimulate an increase in its activity in vivo. It also protects ornithine decarboxylase against proteolysis by chymotrypsin in vitro.


1973 ◽  
Vol 136 (3) ◽  
pp. 669-676 ◽  
Author(s):  
E. Hölttä ◽  
P. Hannonen ◽  
J. Pispa ◽  
J. Jänne

1. Injections of sublethal doses of methylglyoxal bis(guanylhydrazone), a potent inhibitor of putrescine-activated S-adenosylmethionine decarboxylase in vitro, resulted after a few days in an immense increase in the activity of S-adenosylmethionine decarboxylase in normal and regenerating rat liver and in rat thymus. The increase in the activity of S-adenosylmethionine decarboxylase was at least partly due to a marked lengthening of the half-life of the enzyme. 2. In regenerating liver and thymus there was also a moderate stimulation of the activity of ornithine decarboxylase (EC 4.1.1.17) and a marked accumulation of tissue putrescine. 3. Injection of methylglyoxal bis(guanylhydrazone) into the rat also markedly decreased the activity of diamine oxidase (EC 1.4.3.6) in thymus. 4. In no cases where doses of methylglyoxal bis(guanylhydrazone) close to the LD50 dose for the rat were used was it possible to lower tissue spermidine content to any significant extent. 5. Methylglyoxal bis(guanylhydrazone) seemed to act as a competitive inhibitor for the substrate S-adenosylmethionine and as an uncompetitive inhibitor for the activator putrescine in the decarboxylation of S-adenosylmethionine in vitro. 6. In the diamine oxidase reaction, with putrescine as the substrate, methylglyoxal bis(guanylhydrazone) was a non-competitive inhibitor for putrescine.


Sign in / Sign up

Export Citation Format

Share Document