scholarly journals Control of eukaryotic protein synthesis by upstream open reading frames in the 5′-untranslated region of an mRNA

2002 ◽  
Vol 367 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Hedda A. MEIJER ◽  
Adri A.M. THOMAS

Control of gene expression is achieved at various levels. Translational control becomes crucial in the absence of transcription, such as occurs in early developmental stages. One of the initiating events in translation is that the 40S subunit of the ribosome binds the mRNA at the 5′-cap structure and scans the 5′-untranslated region (5′-UTR) for AUG initiation codons. AUG codons upstream of the main open reading frame can induce formation of a translation-competent ribosome that may translate and (i) terminate and re-initiate, (ii) terminate and leave the mRNA, resulting in down-regulation of translation of the main open reading frame, or (iii) synthesize an N-terminally extended protein. In the present review we discuss how upstream AUGs can control the expression of the main open reading frame, and a comparison is made with other elements in the 5′-UTR that control mRNA translation, such as hairpins and internal ribosome entry sites. Recent data indicate the flexibility of controlling translation initiation, and how the mode of ribosome entry on the mRNA as well as the elements in the 5′-UTR can accurately regulate the amount of protein synthesized from a specific mRNA.

2000 ◽  
Vol 275 (40) ◽  
pp. 30787-30793 ◽  
Author(s):  
Hedda A. Meijer ◽  
Wim J. A. G. Dictus ◽  
Eelco D. Keuning ◽  
Adri A. M. Thomas

2004 ◽  
Vol 78 (3) ◽  
pp. 1393-1402 ◽  
Author(s):  
Kenneth E. Murray ◽  
Benjamin P. Steil ◽  
Allan W. Roberts ◽  
David J. Barton

ABSTRACT cis-acting RNA sequences and structures in the 5′ and 3′ nontranslated regions of poliovirus RNA interact with host translation machinery and viral replication proteins to coordinately regulate the sequential translation and replication of poliovirus RNA. The poliovirus internal ribosome entry site (IRES) in the 5′ nontranslated region (NTR) has been implicated as a cis-active RNA required for both viral mRNA translation and viral RNA replication. To evaluate the role of the IRES in poliovirus RNA replication, we exploited the advantages of cell-free translation-replication reactions and preinitiation RNA replication complexes. Genetic complementation with helper mRNAs allowed us to create preinitiation RNA replication complexes containing RNA templates with defined deletions in the viral open reading frame and the IRES. A series of deletions revealed that no RNA elements of either the viral open reading frame or the IRES were required in cis for negative-strand RNA synthesis. The IRES was dispensable for both negative- and positive-strand RNA syntheses. Intriguingly, although small viral RNAs lacking the IRES replicated efficiently, the replication of genome length viral RNAs was stimulated by the presence of the IRES. These results suggest that RNA replication is not directly dependent on a template RNA first functioning as an mRNA. These results further suggest that poliovirus RNA replication is not absolutely dependent on any protein-RNA interactions involving the IRES.


2020 ◽  
Author(s):  
Anthony Gaba ◽  
Hongyun Wang ◽  
Trinisia Fortune ◽  
Xiaohui Qu

Abstract Upstream open reading frame (uORF) translation disrupts scanning 43S flux on mRNA and modulates main open reading frame (mORF) translation efficiency. Current tools, however, have limited access to ribosome dynamics in both upstream and main ORFs of an mRNA. Here, we develop a new two-color in vitro fluorescence assay, Smart-ORF, that monitors individual uORF and mORF translation events in real-time with single-molecule resolution. We demonstrate the utility of Smart-ORF by applying it to uORF-encoded arginine attenuator peptide (AAP)-mediated translational regulation. The method enabled quantification of uORF and mORF initiation efficiencies, 80S dwell time, polysome formation, and the correlation between uORF and mORF translation dynamics. Smart-ORF revealed that AAP-mediated 80S stalling in the uORF stimulates the uORF initiation efficiency and promotes clustering of slower uORF-translating ribosomes. This technology provides a new tool that can reveal previously uncharacterized dynamics of uORF-containing mRNA translation.


Genetics ◽  
1996 ◽  
Vol 142 (1) ◽  
pp. 117-127 ◽  
Author(s):  
Michael Freitag ◽  
Nelima Dighde ◽  
Matthew S Sachs

The Neurospora crmsu arg-2 gene encodes the small subunit of arginine-specific carbamoyl phosphate synthetase. The levels of arg-2 mRNA and mRNA translation are negatively regulated by arginine. An upstream open reading frame (uORF) in the transcript’s 5′ region has been implicated in arginine-specific control. An arg-2-hph fusion gene encoding hygromycin phosphotransferase conferred arginine-regulated resistance to hygromycin when introduced into N. crassa. We used an arg-2-hph strain to select for UV-induced mutants that grew in the presence of hygromycin and arginine, and we isolated 46 mutants that had either of two phenotypes. One phenotype indicated altered expression of both arg-2-hph and urg-2 genes; the other, altered expression of urg-2-hph but not arg-2. One of the latter mutations, which was genetically closely linked to arg-2-hph, was recovered from the 5′ region of the arg-2-hph gene using PCR. Sequence analyses and transformation experiments revealed a mutation at uORF codon 12 (Asp to Asn) that abrogated negative regulation. Examination of the distribution of ribosomes on arg-2-hph transcripts showed that loss of regulation had a translational component, indicating the uORF sequence was important for Arg-specific translational control. Comparisons with other uORFS suggest common elements in translational control mechanisms.


2004 ◽  
Vol 279 (50) ◽  
pp. 52613-52622 ◽  
Author(s):  
Ilham Aliagaevich Muslimov ◽  
Volker Nimmrich ◽  
Alejandro Ivan Hernandez ◽  
Andrew Tcherepanov ◽  
Todd Charlton Sacktor ◽  
...  

Protein kinase Mζ (PKMζ) is an atypical protein kinase C isoform that has been implicated in the protein synthesis-dependent maintenance of long term potentiation and memory storage in the brain. Synapse-associated kinases are uniquely positioned to promote enduring consolidation of structural and functional modifications at the synapse, provided that kinase mRNA is available on site for local input-specific translation. We now report that the mRNA encoding PKMζ is rapidly transported and specifically localized to synaptodendritic neuronal domains. Transport of PKMζ mRNA is specified by two cis-acting dendritic targeting elements (Mζ DTEs). Mζ DTE1, located at the interface of the 5′-untranslated region and the open reading frame, directs somato-dendritic export of the mRNA. Mζ DTE2, in contrast, is located in the 3′-untranslated region and is required for delivery of the mRNA to distal dendritic segments. Colocalization with translational repressor BC1 RNA in hippocampal dendrites suggests that PKMζ mRNA may be subject to translational control in local domains. Dendritic localization of PKMζ mRNA provides a molecular basis for the functional integration of synaptic signal transduction and translational control pathways.


1996 ◽  
Vol 16 (1) ◽  
pp. 73-80 ◽  
Author(s):  
D A Rubin ◽  
J H Youson ◽  
L E Marra ◽  
R M Dores

ABSTRACT A cDNA containing the sequence of GH was cloned and sequenced from a pituitary cDNA library for the holostean fish Lepisosteus osseus (common name: gar). The gar GH cDNA contained an open reading frame of 633 nucleotides and a 3′ untranslated region (including the terminal codon TAG) of 1058 nucleotides. The overall length of the gar GH cDNA including leader sequence, signal sequence, hormone sequence and 3′ untranslated region was 1713 nucleotides. Thus, the gar GH cDNA is the largest vertebrate GH cDNA yet cloned. A comparison of GH sequences from ancient (holostean fishes — gar and bowfin; one chondrostean fish — the Russian sturgeon) and more modern (27 species of teleosts) members of class Actinopterygii indicate that members of this class have maintained many of the invariant residues deemed necessary for GH folding motifs (intramolecular relationships) observed in mammals.


1988 ◽  
Vol 8 (9) ◽  
pp. 3827-3836
Author(s):  
N P Williams ◽  
P P Mueller ◽  
A G Hinnebusch

Translational control of GCN4 expression in the yeast Saccharomyces cerevisiae is mediated by multiple AUG codons present in the leader of GCN4 mRNA, each of which initiates a short open reading frame of only two or three codons. Upstream AUG codons 3 and 4 are required to repress GCN4 expression in normal growth conditions; AUG codons 1 and 2 are needed to overcome this repression in amino acid starvation conditions. We show that the regulatory function of AUG codons 1 and 2 can be qualitatively mimicked by the AUG codons of two heterologous upstream open reading frames (URFs) containing the initiation regions of the yeast genes PGK and TRP1. These AUG codons inhibit GCN4 expression when present singly in the mRNA leader; however, they stimulate GCN4 expression in derepressing conditions when inserted upstream from AUG codons 3 and 4. This finding supports the idea that AUG codons 1 and 2 function in the control mechanism as translation initiation sites and further suggests that suppression of the inhibitory effects of AUG codons 3 and 4 is a general consequence of the translation of URF 1 and 2 sequences upstream. Several observations suggest that AUG codons 3 and 4 are efficient initiation sites; however, these sequences do not act as positive regulatory elements when placed upstream from URF 1. This result suggests that efficient translation is only one of the important properties of the 5' proximal URFs in GCN4 mRNA. We propose that a second property is the ability to permit reinitiation following termination of translation and that URF 1 is optimized for this regulatory function.


2015 ◽  
Author(s):  
David E Weinberg ◽  
Premal Shah ◽  
Stephen W Eichhorn ◽  
Jeffrey A Hussmann ◽  
Joshua B Plotkin ◽  
...  

Ribosome-footprint profiling provides genome-wide snapshots of translation, but technical challenges can confound its analysis. Here, we use improved methods to obtain ribosome-footprint profiles and mRNA abundances that more faithfully reflect gene expression in Saccharomyces cerevisiae. Our results support proposals that both the beginning of coding regions and codons matching rare tRNAs are more slowly translated. They also indicate that emergent polypeptides with as few as three basic residues within a 10-residue window tend to slow translation. With the improved mRNA measurements, the variation attributable to translational control in exponentially growing yeast was less than previously reported, and most of this variation could be predicted with a simple model that considered mRNA abundance, upstream open reading frames, cap-proximal structure and nucleotide composition, and lengths of the coding and 5′- untranslated regions. Collectively, our results reveal key features of translational control in yeast and provide a framework for executing and interpreting ribosome- profiling studies.


Sign in / Sign up

Export Citation Format

Share Document