scholarly journals Kinetic and structural characterization of a product complex of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase from Escherichia coli

2004 ◽  
Vol 380 (3) ◽  
pp. 867-873 ◽  
Author(s):  
Arnaud GARÇON ◽  
Alun BERMINGHAM ◽  
Lu-Yun LIAN ◽  
Jeremy P. DERRICK

HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase) catalyses the transfer of pyrophosphate from ATP to HMDP (6-hydroxymethyl-7,8-dihydropterin), to form AMP and DHPPP (6-hydroxymethyl-7,8-dihydropterin pyrophosphate). This transformation is a key step in the biosynthesis of folic acid, and HPPK is consequently a target for antimicrobial drugs. The substrates are known to bind to HPPK in an ordered manner, with ATP binding first followed by HMDP. In the present study we show by isothermal titration calorimetry that the product, DHPPP, can bind to the HPPK apoenzyme with high affinity (equilibrium dissociation constant, Kd=0.2 µM), but without the enhancement of pterin fluorescence that occurs on binding of HMDP. The transient kinetics of the enzyme can be monitored by measuring the change in the fluorescence of the pterin ring using stopped-flow methods. The fluorescence exhibits a pronounced biphasic behaviour: it initially rises and then declines back to its original level. This behaviour is in agreement with a two-state kinetic model, with the first phase of fluorescence increase associated with HMDP binding to the enzyme, and the second phase with a slow event that occurs after the reaction has taken place. The HPPK–DHPPP and HPPK–DHPPP–AMP complexes were examined by NMR, and the binding site for DHPPP partially mapped from changes in chemical shifts identified from two dimensional 1H/15N heteronuclear single-quantum coherence spectra. The results demonstrate that DHPPP, in contrast to HMDP, is able to bind to the HPPK apoenzyme and suggest that the pyrophosphate moieties on the ligand play an important role in establishment of a high affinity binding site for the pterin ring.

Nature ◽  
1985 ◽  
Vol 315 (6016) ◽  
pp. 254-254
Author(s):  
L. Hennighausen ◽  
U. Siebenlist ◽  
D. Danner ◽  
P. Leder ◽  
D. Rawlins ◽  
...  

2001 ◽  
Vol 85 (03) ◽  
pp. 470-474 ◽  
Author(s):  
Kevin Siebenlist ◽  
Stephen Brennan ◽  
Trudy Holyst ◽  
Michael Mosesson ◽  
David Meh

SummaryHuman fibrin has a low affinity thrombin binding site in its E domain and a high affinity binding site in the carboxy-terminal region of its variant ’ chain (’408-427). Comparison of the ’ amino acid sequence (VRPEHPAETEYDSLYPEDDL) with other protein sequences known to bind to thrombin exosites such as those in GPIb , the platelet thrombin receptor, thrombomodulin, and hirudin suggests no homology or consensus sequences, but Glu and Asp enrichment are common to all. Tyrosine sulfation in these sequences enhances thrombin exosite binding, but this has not been uniformly investigated. The fibrinogen ’ chain mass determined by electrospray ionization mass spectrometry, was 50,549 Da, a value 151 Da greater than predicted from its amino acid/carbohydrate sequence. Since each sulfate group increases mass by 80 Da, this indicates that both tyrosines at 418 and 422 are sulfated. A series of overlapping ’ peptides was prepared for evaluation of their inhibition of 125I-labeled PPACK-thrombin binding to fibrin. ’414-427 was as effective an inhibitor as ’408-427 and its binding affinity was dependent on all carboxy-terminal residues. Mono Tyr-sulfated peptides were prepared by substituting non-sulfatable Phe for Tyr at ’ 418 or 422. Sulfation at either Tyr residue increased binding competition compared with non-sulfated peptides, but was less effective than doubly sulfated peptides, which had 4 to 8-fold greater affinity. The reverse ’ peptide or the forward sequence with repositioned Tyr residues did not compete well for thrombin binding, indicating that the positions of charged residues are important for thrombin binding affinity


1990 ◽  
Vol 258 (4) ◽  
pp. E562-E568
Author(s):  
Y. Okabayashi ◽  
M. Otsuki ◽  
T. Nakamura ◽  
M. Koide ◽  
H. Hasegawa ◽  
...  

We investigated the regulatory effect of cholecystokinin (CCK) on subsequent insulin binding to pancreatic acinar cells. Rat isolated acini were preincubated with various concentrations of CCK octapeptide (CCK-8) at 37 degrees C. Acini were then washed, resuspended in the binding buffer, and incubated with 8.3 pM 125I-labeled insulin for 60 min at 37 degrees C. Pretreatment with CCK-8 caused inhibition of subsequent 125I-insulin binding that was time and concentration dependent. Significant inhibition was observed with 3 pM CCK-8. Computer analysis of the competition-inhibition study with a nonlinear least-squares curve-fitting program revealed that CCK-8 pretreatment of acini reduced the receptor affinity of the high-affinity binding site. This inhibitory action of CCK-8 was not due to the alteration in degradation or internalization of the tracer. When acini were pretreated with 100 pM CCK-8 for 120 min at 4 degrees C, a reduction in the receptor affinity of the high-affinity binding site was also observed. In pancreatic membrane prepared from acini preincubated with 100 pM CCK-8 for 120 min at 37 degrees C, displacement of 125I-insulin (83 pM) by unlabeled insulin (24 degrees C, 1 h) revealed that CCK-8 inhibited 125I-insulin binding by altering the receptor affinity of the high-affinity binding site. In acinar preparations the inhibitory effect of CCK-8 on 125I-insulin binding was abolished when acini were preincubated with CCK-8 and CCK receptor antagonist L 374718 at 37 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)


Metallomics ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 404-414 ◽  
Author(s):  
Kevin K. Tran ◽  
Bhawantha M. Jayawardena ◽  
Maurice R. Elphick ◽  
Christopher E. Jones

Gonadotropin releasing hormone from Asterias rubens binds Cu(ii) in a nitrogen-rich, high-affinity site. Cu(ii)-binding is an evolutionarily conserved feature of GnRH-type neuropeptides.


Sign in / Sign up

Export Citation Format

Share Document