scholarly journals An essential dimer-forming subregion of the endoplasmic reticulum stress sensor Ire1

2005 ◽  
Vol 391 (1) ◽  
pp. 135-142 ◽  
Author(s):  
Daisuke Oikawa ◽  
Yukio Kimata ◽  
Masato Takeuchi ◽  
Kenji Kohno

The luminal domain of the type I transmembrane protein Ire1 senses endoplasmic reticulum stress by an undefined mechanism to up-regulate the signalling pathway for the unfolded protein response. Previously, we proposed that the luminal domain of yeast Ire1 is divided into five subregions, termed subregions I–V sequentially from the N-terminus. Ire1 lost activity when internal deletions of subregion II or IV were made. In the present paper, we show that partial proteolysis of a recombinant protein consisting of the Ire1 luminal domain suggests that subregions II–IV are tightly folded. We also show that a recombinant protein of subregions II–IV formed homodimers, and that this homodimer formation was impaired by an internal deletion of subregion IV. Furthermore, recombinant fragments of subregion IV exhibited a self-binding ability. Therefore, although its sequence is little conserved evolutionarily, subregion IV plays an essential role to promote Ire1 dimer formation.

2021 ◽  
Vol 478 (15) ◽  
pp. 2953-2975
Author(s):  
Timothy Langlais ◽  
Diana Pelizzari-Raymundo ◽  
Sayyed Jalil Mahdizadeh ◽  
Nicolas Gouault ◽  
Francois Carreaux ◽  
...  

The Unfolded Protein response is an adaptive pathway triggered upon alteration of endoplasmic reticulum (ER) homeostasis. It is transduced by three major ER stress sensors, among which the Inositol Requiring Enzyme 1 (IRE1) is the most evolutionarily conserved. IRE1 is an ER-resident type I transmembrane protein exhibiting an ER luminal domain that senses the protein folding status and a catalytic kinase and RNase cytosolic domain. In recent years, IRE1 has emerged as a relevant therapeutic target in various diseases including degenerative, inflammatory and metabolic pathologies and cancer. As such several drugs altering IRE1 activity were developed that target either catalytic activity and showed some efficacy in preclinical pathological mouse models. In this review, we describe the different drugs identified to target IRE1 activity as well as their mode of action from a structural perspective, thereby identifying common and different modes of action. Based on this information we discuss on how new IRE1-targeting drugs could be developed that outperform the currently available molecules.


1999 ◽  
Vol 10 (12) ◽  
pp. 4059-4073 ◽  
Author(s):  
Maddalena de Virgilio ◽  
Claudia Kitzmüller ◽  
Eva Schwaiger ◽  
Michael Klein ◽  
Gert Kreibich ◽  
...  

We are studying endoplasmic reticulum–associated degradation (ERAD) with the use of a truncated variant of the type I ER transmembrane glycoprotein ribophorin I (RI). The mutant protein, RI332, containing only the N-terminal 332 amino acids of the luminal domain of RI, has been shown to interact with calnexin and to be a substrate for the ubiquitin-proteasome pathway. When RI332 was expressed in HeLa cells, it was degraded with biphasic kinetics; an initial, slow phase of ∼45 min was followed by a second phase of threefold accelerated degradation. On the other hand, the kinetics of degradation of a form of RI332 in which the single used N-glycosylation consensus site had been removed (RI332-Thr) was monophasic and rapid, implying a role of the N-linked glycan in the first proteolytic phase. RI332degradation was enhanced when the binding of glycoproteins to calnexin was prevented. Moreover, the truncated glycoprotein interacted with calnexin preferentially during the first proteolytic phase, which strongly suggests that binding of RI332 to the lectin-like protein may result in the slow, initial phase of degradation. Additionally, mannose trimming appears to be required for efficient proteolysis of RI332. After treatment of cells with the inhibitor of N-glycosylation, tunicamycin, destruction of the truncated RI variants was severely inhibited; likewise, in cells preincubated with the calcium ionophore A23187, both RI332 and RI332-Thr were stabilized, despite the presence or absence of the N-linked glycan. On the other hand, both drugs are known to trigger the unfolded protein response (UPR), resulting in the induction of BiP and other ER-resident proteins. Indeed, only in drug-treated cells could an interaction between BiP and RI332 and RI332-Thr be detected. Induction of BiP was also evident after overexpression of murine Ire1, an ER transmembrane kinase known to play a central role in the UPR pathway; at the same time, stabilization of RI332 was observed. Together, these results suggest that binding of the substrate proteins to UPR-induced chaperones affects their half lives.


2005 ◽  
Vol 79 (11) ◽  
pp. 6890-6899 ◽  
Author(s):  
Jennifer A. Isler ◽  
Alison H. Skalet ◽  
James C. Alwine

ABSTRACT Viral infection causes stress to the endoplasmic reticulum. The response to endoplasmic reticulum stress, known as the unfolded protein response (UPR), is designed to eliminate misfolded proteins and allow the cell to recover by attenuating translation and upregulating the expression of chaperones, degradation factors, and factors that regulate the cell's metabolic and redox environment. Some consequences of the UPR (e.g., expression of chaperones and regulation of the metabolism and redox environment) may be advantageous to the viral infection; however, translational attenuation would not. Thus, viruses may induce mechanisms which modulate the UPR, maintaining beneficial aspects and suppressing deleterious aspects. We demonstrate that human cytomegalovirus (HCMV) infection induces the UPR but specifically regulates the three branches of UPR signaling, PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE-1), to favor viral replication. HCMV infection activated the eIF2α kinase PERK; however, the amount of phosphorylated eIF2α was limited and translation attenuation did not occur. Interestingly, translation of select mRNAs, which is dependent on eIF2α phosphorylation, did occur, including the transcription factor ATF4, which activates genes which may benefit the infection. The endoplasmic reticulum stress-induced activation of the transcription factor ATF6 was suppressed in HCMV-infected cells; however, specific chaperone genes, normally activated by ATF6, were activated by a virus-induced, ATF6-independent mechanism. Lastly, HCMV infection activated the IRE-1 pathway, as indicated by splicing of Xbp-1 mRNA. However, transcriptional activation of the XBP-1 target gene EDEM (ER degradation-enhancing α-mannosidase-like protein, a protein degradation factor) was inhibited. These results suggest that, although HCMV infection induces the unfolded protein response, it modifies the outcome to benefit viral replication.


Author(s):  
Robert Clarke ◽  
Ayesha N. Shajahan ◽  
Yue Wang ◽  
John J. Tyson ◽  
Rebecca B. Riggins ◽  
...  

AbstractLack of understanding of endocrine resistance remains one of the major challenges for breast cancer researchers, clinicians, and patients. Current reductionist approaches to understanding the molecular signaling driving resistance have offered mostly incremental progress over the past 10 years. As the field of systems biology has begun to mature, the approaches and network modeling tools being developed and applied therein offer a different way to think about how molecular signaling and the regulation of crucial cellular functions are integrated. To gain novel insights, we first describe some of the key challenges facing network modeling of endocrine resistance, many of which arise from the properties of the data spaces being studied. We then use activation of the unfolded protein response (UPR) following induction of endoplasmic reticulum stress in breast cancer cells by antiestrogens, to illustrate our approaches to computational modeling. Activation of UPR is a key determinant of cell fate decision-making and regulation of autophagy and apoptosis. These initial studies provide insight into a small subnetwork topology obtained using differential dependency network analysis and focused on the UPR gene XBP1. The XBP1 subnetwork topology incorporates BCAR3, BCL2, BIK, NF-κB, and other genes as nodes; the connecting edges represent the dependency structures among these nodes. As data from ongoing cellular and molecular studies become available, we will build detailed mathematical models of this XBP1-UPR network.


Sign in / Sign up

Export Citation Format

Share Document