recombinant fragments
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 9)

H-INDEX

27
(FIVE YEARS 3)

2020 ◽  
Vol 21 (17) ◽  
pp. 6324 ◽  
Author(s):  
Annamaria Sandomenico ◽  
Jwala P. Sivaccumar ◽  
Menotti Ruvo

Antibodies and antibody-derived molecules are continuously developed as both therapeutic agents and key reagents for advanced diagnostic investigations. Their application in these fields has indeed greatly expanded the demand of these molecules and the need for their production in high yield and purity. While full-length antibodies require mammalian expression systems due to the occurrence of functionally and structurally important glycosylations, most antibody fragments and antibody-like molecules are non-glycosylated and can be more conveniently prepared in E. coli-based expression platforms. We propose here an updated survey of the most effective and appropriate methods of preparation of antibody fragments that exploit E. coli as an expression background and review the pros and cons of the different platforms available today. Around 250 references accompany and complete the review together with some lists of the most important new antibody-like molecules that are on the market or are being developed as new biotherapeutics or diagnostic agents.


2020 ◽  
Vol 58 (4) ◽  
pp. 475-479
Author(s):  
Amornrat Geadkaew-Krenc ◽  
Rudi Grams ◽  
Wansika Phadungsil ◽  
Wanlapa Chaibangyang ◽  
Nanthawat Kosa ◽  
...  

Tegumental and excretory-secretory proteins are reported as diagnostic antigens for human opisthorchiasis. Rhophilin associated tail protein1-like (OvROPN1L) protein of Opisthorchis viverrini sperm tail showed potential as a diagnostic antigen. The OvROPN1L recombinant fragments were assayed for diagnostic antigenicity for human opisthorchiasis using indirect ELISA. The strongest antigenic region was a N-terminus peptide of M1 - P56. One synthetic peptide (P1, L3-Q13) of this region showed the highest antigenicity to opisthorchiasis. Sera from other parasitic infections including Strongyloides stercoralis, hookworm, Taenia spp, minute intestinal flukes, Paragonimus spp showed lower reactivity to P1. Peptide P1 is located in the disordered N-terminus of ROPN1L supporting its suitability as linear epitope. In the Platyhelminthes the N-terminal sequence of ROPN1L is diverging with taxonomic distance further suggesting that peptide P1 has potential as diagnostic tool in the genus Opisthorchis/Clonorchis. It should be further evaluated in combination with peptides derived from other O. viverrini antigens to increase its diagnostic power.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1633 ◽  
Author(s):  
Giel Stalmans ◽  
Anastasia V. Lilina ◽  
Pieter-Jan Vermeire ◽  
Jan Fiala ◽  
Petr Novák ◽  
...  

The molecular architecture and assembly mechanism of intermediate filaments have been enigmatic for decades. Among those, lamin filaments are of particular interest due to their universal role in cell nucleus and numerous disease-related mutations. Filament assembly is driven by specific interactions of the elementary dimers, which consist of the central coiled-coil rod domain flanked by non-helical head and tail domains. We aimed to investigate the longitudinal ‘head-to-tail’ interaction of lamin dimers (the so-called ACN interaction), which is crucial for filament assembly. To this end, we prepared a series of recombinant fragments of human lamin A centred around the N- and C-termini of the rod. The fragments were stabilized by fusions to heterologous capping motifs which provide for a correct formation of parallel, in-register coiled-coil dimers. As a result, we established crystal structures of two N-terminal fragments one of which highlights the propensity of the coiled-coil to open up, and one C-terminal rod fragment. Additional studies highlighted the capacity of such N- and C-terminal fragments to form specific complexes in solution, which were further characterized using chemical cross-linking. These data yielded a molecular model of the ACN complex which features a 6.5 nm overlap of the rod ends.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Mingliang Chen ◽  
Chi Zhang ◽  
Xi Zhang ◽  
Min Chen

ABSTRACT Quinolone resistance is increasing in Neisseria meningitidis, with its prevalence in China being high (>70%), but its origin remains unknown. The aim of this study was to investigate the donors of mutation-harboring gyrA alleles in N. meningitidis. A total of 198 N. meningitidis isolates and 293 commensal Neisseria isolates were collected between 2005 and 2018 in Shanghai, China. The MICs of ciprofloxacin were determined using the agar dilution method. The resistance-associated genes gyrA and parC were sequenced for all isolates, while a few isolates were sequenced on the Illumina platform. The prevalences of quinolone resistance in the N. meningitidis and commensal Neisseria isolates were 67.7% (134/198) and 99.3% (291/293), respectively. All 134 quinolone-resistant N. meningitidis isolates possessed mutations in T91 (n = 123) and/or D95 (n = 12) of GyrA, with 7 isolates also harboring ParC mutations and exhibiting higher MICs. Phylogenetic analysis of the gyrA sequence identified six clusters. Among the 71 mutation-harboring gyrA alleles found in 221 N. meningitidis isolates and genomes (n = 221), 12 alleles (n = 103, 46.6%) were included in the N. meningitidis cluster, while 20 alleles (n = 56) were included in the N. lactamica cluster, 27 alleles (n = 49) were included in the N. cinerea cluster, and 9 alleles (n = 10) were included in the N. subflava cluster. Genomic analyses identified the exact N. lactamica donors of seven mutation-harboring gyrA alleles (gyrA92, gyrA97, gyrA98, gyrA114, gyrA116, gyrA151, and gyrA230) and the N. subflava donor isolate of gyrA171, with the sizes of the recombinant fragments ranging from 634 to 7,499 bp. Transformation of gyrA fragments from these donor strains into a meningococcal isolate increased its ciprofloxacin MIC from 0.004 μg/ml to 0.125 or 0.19 μg/ml and to 0.5 μg/ml with further transformation of an additional ParC mutation. Over half of the quinolone-resistant N. meningitidis isolates acquired resistance by horizontal gene transfer from three commensal Neisseria species. Quinolone resistance in N. meningitidis increases in a stepwise manner.


2019 ◽  
Vol 20 (22) ◽  
pp. 5647 ◽  
Author(s):  
Vedud Purde ◽  
Florian Busch ◽  
Elena Kudryashova ◽  
Vicki H. Wysocki ◽  
Dmitri S. Kudryashov

Actin-depolymerizing factor (ADF)/cofilins accelerate actin turnover by severing aged actin filaments and promoting the dissociation of actin subunits. In the cell, ADF/cofilins are assisted by other proteins, among which cyclase-associated proteins 1 and 2 (CAP1,2) are particularly important. The N-terminal half of CAP has been shown to promote actin filament dynamics by enhancing ADF-/cofilin-mediated actin severing, while the central and C-terminal domains are involved in recharging the depolymerized ADP–G-actin/cofilin complexes with ATP and profilin. We analyzed the ability of the N-terminal fragments of human CAP1 and CAP2 to assist human isoforms of “muscle” (CFL2) and “non-muscle” (CFL1) cofilins in accelerating actin dynamics. By conducting bulk actin depolymerization assays and monitoring single-filament severing by total internal reflection fluorescence (TIRF) microscopy, we found that the N-terminal domains of both isoforms enhanced cofilin-mediated severing and depolymerization at similar rates. According to our analytical sedimentation and native mass spectrometry data, the N-terminal recombinant fragments of both human CAP isoforms form tetramers. Replacement of the original oligomerization domain of CAPs with artificial coiled-coil sequences of known oligomerization patterns showed that the activity of the proteins is directly proportional to the stoichiometry of their oligomerization; i.e., tetramers and trimers are more potent than dimers, which are more effective than monomers. Along with higher binding affinities of the higher-order oligomers to actin, this observation suggests that the mechanism of actin severing and depolymerization involves simultaneous or consequent and coordinated binding of more than one N-CAP domain to F-actin/cofilin complexes.


2019 ◽  
Vol 93 (23) ◽  
Author(s):  
Ray T. Y. So ◽  
Daniel K. W. Chu ◽  
Eve Miguel ◽  
Ranawaka A. P. M. Perera ◽  
Jamiu O. Oladipo ◽  
...  

ABSTRACT Genetic recombination has frequently been observed in coronaviruses. Here, we sequenced multiple complete genomes of dromedary camel coronavirus HKU23 (DcCoV-HKU23) from Nigeria, Morocco, and Ethiopia and identified several genomic positions indicative of cross-species virus recombination events among other betacoronaviruses of the subgenus Embecovirus (clade A beta-CoVs). Recombinant fragments of a rabbit coronavirus (RbCoV-HKU14) were identified at the hemagglutinin esterase gene position. Homolog fragments of a rodent CoV were also observed at 8.9-kDa open reading frame 4a at the 3′ end of the spike gene. The patterns of recombination differed geographically across the African region, highlighting a mosaic structure of DcCoV-HKU23 genomes circulating in dromedaries. Our results highlighted active recombination of coronaviruses circulating in dromedaries and are also relevant to the emergence and evolution of other betacoronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV). IMPORTANCE Genetic recombination is often demonstrated in coronaviruses and can result in host range expansion or alteration in tissue tropism. Here, we showed interspecies events of recombination of an endemic dromedary camel coronavirus, HKU23, with other clade A betacoronaviruses. Our results supported the possibility that the zoonotic pathogen MERS-CoV, which also cocirculates in the same camel species, may have undergone similar recombination events facilitating its emergence or may do so in its future evolution.


2019 ◽  
Vol 20 (9) ◽  
pp. 2338 ◽  
Author(s):  
Ning Shen ◽  
Ge Song ◽  
Haiqiang Yang ◽  
Xiaoyang Lin ◽  
Breanna Brown ◽  
...  

Alpha-synuclein is considered the major pathological protein associated with Parkinson’s disease, but there is still no effective immunotherapy which targets alpha-synuclein. In order to create a safer and more effective therapy against PD, we are targeting an epitope of alpha-synuclein rather than full-length alpha-synuclein. We have selected several antigenic domains (B-cell epitope) through antigenicity prediction, and also made several recombinant protein fragments from alpha-synuclein upon antigenicity prediction in an E. coli system. We then tested the function of each of the peptides and recombinant fragments in aggregation, their toxicity and antigenicity. We have discovered that the full-length recombinant (aa1–140) can aggregate into oligomers or even fibrils, and fragment aa15–65 can promote the aggregation of aa1–140. It is worth noting that it not only promotes whole protein aggregation, but also self-aggregates as seen by western blotting and silver staining assays. We have tested all candidates on primary neurons for their toxicity and discovered that aa15–65 is the most toxic domain compared to all other fragments. The antibody targeting this domain also showed both anti-aggregation activity and some therapeutic effect. Therefore, we believe that we have identified the most potent therapeutic domain of alpha synuclein as a therapeutic target.


2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Oliver Neuhaus ◽  
Karl-Heinz Wiesmüller ◽  
Hans-Peter Hartung ◽  
Heinz Wiendl

The human acetylcholine receptor (AChR) is well characterized as the target antigen in myasthenia gravis (MG). Pathogenic antibody responses against the AChR alpha-chain have been investigated extensively and are of diagnostic and prognostic value. However, less is known on the pathogenetic relevance of T-cell responses against epitopes of the different AChR chains (alpha, epsilon, gamma). Using an enzyme-linked immunospot (ELISPOT) assay we measured T-cell responses against recombinant fragments and synthetic peptides of the α and the ε subunits of the human AChR in MG patients (n=15) and in healthy donors (HD; n=9). In MG, highest T-cell responses were noted against recombinantly expressed Epsilon 1-221. Among the synthetic peptides Epsilon 201-215 showed the most prominent T-cell response and represented the peptide with the most remarkable difference between MG and HD. Taken together, prominent T-cell responses against the ε subunit of the human AChR indicate an important role in the pathogenesis of MG.


Toxins ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 381 ◽  
Author(s):  
Clóvis Moreira ◽  
Marcos Ferreira ◽  
Carlos da Cunha ◽  
Rafael Donassolo ◽  
Paula Finger ◽  
...  

Botulism is a potentially fatal intoxication caused by botulinum neurotoxins (BoNTs) produced mainly by Clostridium botulinum. Vaccination against BoNT serotypes C and D is the main procedure to control cattle botulism. Current vaccines contain formaldehyde-inactivated native BoNTs, which have a time-consuming production process and pose safety risks. The development of non-toxic recombinant vaccines has helped to overcome these limitations. This study aims to evaluate the humoral immune response generated by cattle immunized with non-purified recombinant fragments of BoNTs C and D. Cattle were vaccinated in a two-dose scheme with 100, 200 and 400 µg of each antigen, with serum sampling on days 0, 56, 120, and 180 after vaccination. Animals who received either 200 or 400 μg of both antigens induced titers higher than the minimum required by the Brazilian ministry of Agriculture, Livestock and Food Supply and achieved 100% (8/8) seroconversion rate. Animals vaccinated with commercial toxoid vaccine had only a 75% (6/8) seroconversion rate for both toxins. Animals that received doses containing 400 µg of recombinant protein were the only ones to maintain titers above the required level up until day 120 post-vaccination, and to achieve 100% (8/8) seroconversion for both toxins. In conclusion, 400 µg the recombinant Escherichia coli cell lysates supernatant was demonstrated to be an affordable means of producing an effective and safe botulism vaccine for cattle.


Sign in / Sign up

Export Citation Format

Share Document