Analysis of apolipoprotein E nuclear localization using green fluorescent protein and biotinylation approaches

2008 ◽  
Vol 409 (3) ◽  
pp. 701-709 ◽  
Author(s):  
Woojin S. Kim ◽  
David A. Elliott ◽  
Maaike Kockx ◽  
Leonard Kritharides ◽  
Kerry-Anne Rye ◽  
...  

Previous results indicate that apoE (apolipoprotein E) may be associated with the nucleus in specific cell types, particularly under stress conditions such as serum starvation. In addition, nuclear apoE localization in ovarian cancer was recently shown to be correlated with patient survival. In order to better understand the factors associated with apoE nuclear localization, we examined intracellular apoE trafficking using live-cell imaging of CHO (Chinese-hamster ovary) cells that constitutively expressed apoE–GFP (green fluorescent protein). In addition, we used biotinylated apoE (in a lipid-free state and as a lipidated discoidal complex) to track the uptake and potential nuclear targeting of exogenous apoE. Our results indicate that a small proportion of apoE–GFP is detected in the nucleus of living apoE–GFP-expressing CHO cells and that the level of apoE–GFP in the nucleus is increased with serum starvation. Exposure of control CHO cells to exogenous apoE–GFP did not result in nuclear apoE–GFP localization in the recipient cells. Similarly, biotinylated apoE did not reach the nucleus of control CHO cells or SK-N-SH neurons. In contrast, when biotinylated apoE was delivered to recipient cells as a lipidated apoE disc, apoE was detected in the nucleus, suggesting that the lipoprotein complex alters the intracellular degradation or trafficking of apoE. Biotinylated apoE discs containing each of the three common human apoE isoforms (E2, E3 and E4) were also tested for nuclear trafficking. All three apoE isoforms were equally detected in the nucleus. These studies provide new evidence that apoE may be targeted to the nucleus and shed light on factors that regulate this process.

Traffic ◽  
2017 ◽  
Vol 18 (3) ◽  
pp. 192-204 ◽  
Author(s):  
Constantin N. Takacs ◽  
Ursula Andreo ◽  
Rachel L. Belote ◽  
Joan Pulupa ◽  
Margaret A. Scull ◽  
...  

2000 ◽  
Vol 28 (5) ◽  
pp. A396-A396
Author(s):  
S. Hiscox ◽  
M. B. Hallett ◽  
C. W. van den Berg

2015 ◽  
Vol 89 (10) ◽  
pp. 5701-5713 ◽  
Author(s):  
Paula Jáuregui ◽  
Eric C. Logue ◽  
Megan L. Schultz ◽  
Stephanie Fung ◽  
Nathaniel R. Landau

ABSTRACTSterile alpha motif domain and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) replication in myeloid and resting T cells. Lentiviruses such as HIV-2 and some simian immunodeficiency viruses (SIVs) counteract the restriction by encoding Vpx or Vpr, accessory proteins that are packaged in virions and which, upon entry of the virus into the cytoplasm, induce the proteasomal degradation of SAMHD1. As a tool to study these mechanisms, we generated HeLa cell lines that express a fusion protein termed NLS.GFP.SAM595 in which the Vpx binding domain of SAMHD1 is fused to the carboxy terminus of green fluorescent protein (GFP) and a nuclear localization signal is fused to the amino terminus of GFP. Upon incubation of Vpx-containing virions with the cells, the NLS.GFP.SAM595 fusion protein was degraded over several hours and the levels remained low over 5 days as the result of continued targeting of the CRL4 E3 ubiquitin ligase. Degradation of the fusion protein required that it contain a nuclear localization sequence. Fusion to the cytoplasmic protein muNS rendered the protein resistant to Vpx-mediated degradation, confirming that SAMHD1 is targeted in the nucleus. Virions treated with protease inhibitors failed to release Vpx, indicating that Gag processing was required for Vpx release from the virion. Mutations in the capsid protein that altered the kinetics of virus uncoating and the Gag binding drug PF74 had no effect on the Vpx-mediated degradation. These results suggest that Vpx is released from virions without a need for uncoating of the capsid, allowing Vpx to transit to the nucleus rapidly upon entry into the cytoplasm.IMPORTANCESAMHD1 restricts lentiviral replication in myeloid cells and resting T cells. Its importance is highlighted by the fact that viruses such as HIV-2 encode an accessory protein that is packaged in the virion and is dedicated to inducing SAMHD1 degradation. Vpx needs to act rapidly upon infection to allow reverse transcription to proceed. The limited number of Vpx molecules in a virion also needs to clear the cell of SAMHD1 over a prolonged period of time. Using an engineered HeLa cell line that expresses a green fluorescent protein (GFP)-SAMHD1 fusion protein, we showed that the Vpx-dependent degradation occurs without a need for viral capsid uncoating. In addition, the fusion protein was degraded only when it was localized to the nucleus, confirming that SAMHD1 is targeted in the nucleus and thus explaining why Vpx also localizes to the nucleus.


Author(s):  
Vasily N. Dobrovolsky ◽  
Lynda J. McGarrity ◽  
Suzanne M. Morris ◽  
Robert H. Heflich

Sign in / Sign up

Export Citation Format

Share Document