The regulation and function of Class III PI3Ks: novel roles for Vps34

2008 ◽  
Vol 410 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Jonathan M. Backer

The Class III PI3K (phosphoinositide 3-kinase), Vps34 (vacuolar protein sorting 34), was first described as a component of the vacuolar sorting system in Saccharomyces cerevisiae and is the sole PI3K in yeast. The homologue in mammalian cells, hVps34, has been studied extensively in the context of endocytic sorting. However, hVps34 also plays an important role in the ability of cells to respond to changes in nutrient conditions. Recent studies have shown that mammalian hVps34 is required for the activation of the mTOR (mammalian target of rapamycin)/S6K1 (S6 kinase 1) pathway, which regulates protein synthesis in response to nutrient availability. In both yeast and mammalian cells, Class III PI3Ks are also required for the induction of autophagy during nutrient deprivation. Finally, mammalian hVps34 is itself regulated by nutrients. Thus Class III PI3Ks are implicated in the regulation of both autophagy and, through the mTOR pathway, protein synthesis, and thus contribute to the integration of cellular responses to changing nutritional status.

2007 ◽  
Vol 35 (2) ◽  
pp. 239-241 ◽  
Author(s):  
Y. Yan ◽  
J.M. Backer

The class III PI3K (phosphoinositide 3-kinase), Vps34 (vacuolar protein sorting 34), was first identified as a regulator of vacuolar hydrolase sorting in yeast. Unlike other PI3Ks, the Vps34 lipid kinase specifically utilizes phosphatidylinositol as a substrate, producing the single lipid product PtdIns3P. While Vps34 has been studied for some time in the context of endocytosis and vesicular trafficking, it has more recently been implicated as an important regulator of autophagy, trimeric G-protein signalling, and the mTOR (mammalian target of rapamycin) nutrient-sensing pathway. The present paper will focus on studies that describe the regulation of hVps34 (human Vps34) intracellular targeting and enzymatic activity in yeast and mammalian cells.


2009 ◽  
Vol 417 (3) ◽  
pp. 747-755 ◽  
Author(s):  
Ying Yan ◽  
Rory J. Flinn ◽  
Haiyan Wu ◽  
Rachel S. Schnur ◽  
Jonathan M. Backer

The mammalian Class III PI3K (phosphoinositide 3-kinase), hVps34 [mammalian Vps (vacuolar protein sorting) 34 homologue], is an important regulator of vesicular trafficking, autophagy and nutrient sensing. In yeast, Vps34 is associated with a putative serine/threonine protein kinase, Vps15, which is required for Vps34p activity. The mammalian homologue of Vps15p, hVps15 (formerly called p150), also binds to hVps34, but its role in hVps34 signalling has not been evaluated. In the present study we have therefore compared the activity and regulation of hVps34 expressed without or with hVps15. We find that hVps34 has low specific activity when expressed alone; co-expression with hVps15 leads to a marked increase in activity. Notably, beclin-1/UVRAG (UV radiation resistance-associated gene) activation of hVps34 requires co-expression with hVps15; this may be explained by the observation that beclin-1/UVRAG expression increases hVps34/hVps15 binding. Regulation of hVps34 activity by nutrients also requires co-expression with hVps15. Finally, given a recent report that hVps34 activity requires Ca2+/CaM (calmodulin), we considered whether hVps15 might be involved in this regulation. Although hVps34 does bind CaM, we find its activity is not affected by treatment of cells with BAPTA/AM [1,2-bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid tetrakis(acetoxymethyl ester)] or W7. Removal of CaM by EDTA or EGTA washes has no effect on hVps34 activity, and hVps34 activity in vitro is unaffected by Ca2+ chelation. The results of the present study show that, in mammalian cells, hVps34 activity is regulated through its interactions with hVps15, but is independent of Ca2+/CaM.


2007 ◽  
Vol 35 (5) ◽  
pp. 1314-1316 ◽  
Author(s):  
M.G. MacKenzie ◽  
D.L. Hamilton ◽  
J.T. Murray ◽  
K. Baar

Resistance-exercise training results in a progressive increase in muscle mass and force production. Following an acute bout of resistance exercise, the rate of protein synthesis increases proportionally with the increase in protein degradation, correlating at 3 h in the starved state. Amino acids taken immediately before or immediately after exercise increase the post-exercise rate of protein synthesis. Therefore a protein that controls protein degradation and amino acid-sensitivity would be a potential candidate for controlling the activation of protein synthesis following resistance exercise. One such candidate is the class III PI3K (phosphoinositide 3-kinase) Vps34 (vacuolar protein sorting mutant 34). Vps34 controls both autophagy and amino acid signalling to mTOR (mammalian target of rapamycin) and its downstream target p70 S6K1 (S6 kinase 1). We have identified a significant increase in mVps34 (mammalian Vps34) activity 3 h after resistance exercise, continuing for at least 6 h, and propose a mechanism whereby mVps34 could act as an internal amino acid sensor to mTOR after resistance exercise.


2008 ◽  
Vol 19 (12) ◽  
pp. 5360-5372 ◽  
Author(s):  
Eisuke Itakura ◽  
Chieko Kishi ◽  
Kinji Inoue ◽  
Noboru Mizushima

Class III phosphatidylinositol 3-kinase (PI3-kinase) regulates multiple membrane trafficking. In yeast, two distinct PI3-kinase complexes are known: complex I (Vps34, Vps15, Vps30/Atg6, and Atg14) is involved in autophagy, and complex II (Vps34, Vps15, Vps30/Atg6, and Vps38) functions in the vacuolar protein sorting pathway. Atg14 and Vps38 are important in inducing both complexes to exert distinct functions. In mammals, the counterparts of Vps34, Vps15, and Vps30/Atg6 have been identified as Vps34, p150, and Beclin 1, respectively. However, orthologues of Atg14 and Vps38 remain unknown. We identified putative mammalian homologues of Atg14 and Vps38. The Vps38 candidate is identical to UV irradiation resistance-associated gene (UVRAG), which has been reported as a Beclin 1-interacting protein. Although both human Atg14 and UVRAG interact with Beclin 1 and Vps34, Atg14, and UVRAG are not present in the same complex. Although Atg14 is present on autophagic isolation membranes, UVRAG primarily associates with Rab9-positive endosomes. Silencing of human Atg14 in HeLa cells suppresses autophagosome formation. The coiled-coil region of Atg14 required for binding with Vps34 and Beclin 1 is essential for autophagy. These results suggest that mammalian cells have at least two distinct class III PI3-kinase complexes, which may function in different membrane trafficking pathways.


2007 ◽  
Vol 74 ◽  
pp. 47-57 ◽  
Author(s):  
David J. Gill ◽  
Hsiangling Teo ◽  
Ji Sun ◽  
Olga Perisic ◽  
Dmitry B. Veprintsev ◽  
...  

Three large protein complexes known as ESCRT I, ESCRT II and ESCRT III drive the progression of ubiquitinated membrane cargo from early endosomes to lysosomes. Several steps in this process critically depend on PtdIns3P, the product of the class III phosphoinositide 3-kinase. Our work has provided insights into the architecture, membrane recruitment and functional interactions of the ESCRT machinery. The fan-shaped ESCRT I core and the trilobal ESCRT II core are essential to forming stable, rigid scaffolds that support additional, flexibly-linked domains, which serve as gripping tools for recognizing elements of the MVB (multivesicular body) pathway: cargo protein, membranes and other MVB proteins. With these additional (non-core) domains, ESCRT I grasps monoubiquitinated membrane proteins and the Vps36 subunit of the downstream ESCRT II complex. The GLUE (GRAM-like, ubiquitin-binding on Eap45) domain extending beyond the core of the ESCRT II complex recognizes PtdIns3P-containing membranes, monoubiquitinated cargo and ESCRT I. The structure of this GLUE domain demonstrates that it has a split PH (pleckstrin homology) domain fold, with a non-typical phosphoinositide-binding pocket. Mutations in the lipid-binding pocket of the ESCRT II GLUE domain cause a strong defect in vacuolar protein sorting in yeast.


2004 ◽  
Vol 166 (2) ◽  
pp. 205-211 ◽  
Author(s):  
Prasenjit Mitra ◽  
Yingjie Zhang ◽  
Lucia E. Rameh ◽  
Maria P. Ivshina ◽  
Dannel McCollum ◽  
...  

The mammalian tumor suppressor, phosphatase and tensin homologue deleted on chromosome 10 (PTEN), inhibits cell growth and survival by dephosphorylating phosphatidylinositol-(3,4,5)-trisphosphate (PI[3,4,5]P3). We have found a homologue of PTEN in the fission yeast, Schizosaccharomyces pombe (ptn1). This was an unexpected finding because yeast (S. pombe and Saccharomyces cerevisiae) lack the class I phosphoinositide 3-kinases that generate PI(3,4,5)P3 in higher eukaryotes. Indeed, PI(3,4,5)P3 has not been detected in yeast. Surprisingly, upon deletion of ptn1 in S. pombe, PI(3,4,5)P3 became detectable at levels comparable to those in mammalian cells, indicating that a pathway exists for synthesis of this lipid and that the S. pombe ptn1, like mammalian PTEN, suppresses PI(3,4,5)P3 levels. By examining various mutants, we show that synthesis of PI(3,4,5)P3 in S. pombe requires the class III phosphoinositide 3-kinase, vps34p, and the phosphatidylinositol-4-phosphate 5-kinase, its3p, but does not require the phosphatidylinositol-3-phosphate 5-kinase, fab1p. These studies suggest that a pathway for PI(3,4,5)P3 synthesis downstream of a class III phosphoinositide 3-kinase evolved before the appearance of class I phosphoinositide 3-kinases.


2007 ◽  
Vol 35 (2) ◽  
pp. 236-238 ◽  
Author(s):  
P. Gulati ◽  
G. Thomas

Nutrient overload induces constitutive S6K1 (S6 kinase 1) activation, which leads to insulin resistance by suppressing insulin-induced class I PI3K (phosphoinositide 3-kinase) signalling [Um, Frigerio, Watanabe, Picard, Joaquin, Sticker, Fumagalli, Allegrini, Kozma, Auwerx and Thomas (2004) Nature 431, 200–205]. This finding gave rise to the question of the mechanism by which nutrients, such as AAs (amino acids), enter the mTOR (mammalian target of rapamycin)/S6K1 signalling pathway. Counter to the prevailing view, our recent studies have shown that the AA input into the mTOR/S6K1 signalling pathway is not mediated by the tumour suppressor TSC1 (tuberous sclerosis complex 1)/TSC2 or its target, the proto-oncogene Rheb (Ras homologue enriched in brain). Instead, we found that the AA input was mediated by class 3 PI3K, or hVps34 (human vacuolar protein sorting 34). In brief, ectopic expression of hVps34 drives S6K1 activation, but only in the presence of AAs, and this effect is blocked by small interfering RNAs directed against hVps34. Moreover, stimulation of cells with AAs increases hVps34 activity, as indicated by the production of PI3P (phosphatidylinositol 3-phosphate). PI3P mediates the recruitment of proteins containing FYVE (Fab1p, YOTB, Vac1p and EEA1) or PX (Phox homology) domains to endosomal membranes, with PI3P-rich micro-domains acting as signalling platforms. Additional evidence indicating hVps34 as the mediator of AA input to S6K1 came from experiments in which S6K1 activation was attenuated by ectopic expression of a cDNA containing two FYVE domains, which bind to PI3P, preventing binding of proteins containing either FYVE or PX domains [Nobukuni, Joaquin, Roccio, Dann, Kim, Gulati, Byfield, Backer, Natt, Bos, Zwartkruis and Thomas (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14238–14243].


2015 ◽  
Vol 112 (52) ◽  
pp. 15790-15797 ◽  
Author(s):  
Jinghui Zhao ◽  
Bo Zhai ◽  
Steven P. Gygi ◽  
Alfred Lewis Goldberg

Growth factors and nutrients enhance protein synthesis and suppress overall protein degradation by activating the protein kinase mammalian target of rapamycin (mTOR). Conversely, nutrient or serum deprivation inhibits mTOR and stimulates protein breakdown by inducing autophagy, which provides the starved cells with amino acids for protein synthesis and energy production. However, it is unclear whether proteolysis by the ubiquitin proteasome system (UPS), which catalyzes most protein degradation in mammalian cells, also increases when mTOR activity decreases. Here we show that inhibiting mTOR with rapamycin or Torin1 rapidly increases the degradation of long-lived cell proteins, but not short-lived ones, by stimulating proteolysis by proteasomes, in addition to autophagy. This enhanced proteasomal degradation required protein ubiquitination, and within 30 min after mTOR inhibition, the cellular content of K48-linked ubiquitinated proteins increased without any change in proteasome content or activity. This rapid increase in UPS-mediated proteolysis continued for many hours and resulted primarily from inhibition of mTORC1 (not mTORC2), but did not require new protein synthesis or key mTOR targets: S6Ks, 4E-BPs, or Ulks. These findings do not support the recent report that mTORC1 inhibition reduces proteolysis by suppressing proteasome expression [Zhang Y, et al. (2014) Nature 513(7518):440–443]. Several growth-related proteins were identified that were ubiquitinated and degraded more rapidly after mTOR inhibition, including HMG-CoA synthase, whose enhanced degradation probably limits cholesterol biosynthesis upon insulin deficiency. Thus, mTOR inhibition coordinately activates the UPS and autophagy, which provide essential amino acids and, together with the enhanced ubiquitination of anabolic proteins, help slow growth.


2006 ◽  
Vol 34 (2) ◽  
pp. 213-216 ◽  
Author(s):  
C.G. Proud

Insulin rapidly activates protein synthesis by activating components of the translational machinery including eIFs (eukaryotic initiation factors) and eEFs (eukaryotic elongation factors). In the long term, insulin also increases the cellular content of ribosomes to augment the capacity for protein synthesis. The rapid activation of protein synthesis by insulin is mediated primarily through phosphoinositide 3-kinase. This involves the activation of PKB (protein kinase B). In one case, PKB acts to phosphorylate and inactivate glycogen synthase kinase 3, which in turn phosphorylates and inhibits eIF2B. Insulin elicits the dephosphorylation and activation of eIF2B. Since eIF2B is required for recycling of eIF2, a factor required for all cytoplasmic translation initiation events, this will contribute to overall activation of protein synthesis. PKB also phosphorylates the TSC1 (tuberous sclerosis complex 1)–TSC2 complex to relieve its inhibitory action on the mTOR (mammalian target of rapamycin). Inhibition of mTOR by rapamycin markedly impairs insulin-activated protein synthesis. mTOR controls translation initiation and elongation. The cap-binding factor eIF4E can be sequestered in inactive complexes by 4E-BP1 (eIF4E-binding protein 1). Insulin elicits phosphorylation of 4E-BP1 and its release from eIF4E, allowing eIF4E to form initiation factor complexes. Insulin induces dephosphorylation and activation of eEF2 to accelerate elongation. Both effects are blocked by rapamycin. Insulin inactivates eEF2 kinase by increasing its phosphorylation at several mTOR-regulated sites. Insulin also stimulates synthesis of ribosomal proteins by promoting recruitment of their mRNAs into polyribosomes. This is inhibited by rapamycin. Several key questions remain about, for example, the mechanisms by which mTOR controls 4E-BP1 and eEF2 kinase and the control of ribosomal protein translation.


Sign in / Sign up

Export Citation Format

Share Document