scholarly journals Leishmania donovani Ran-GTPase interacts at the nuclear rim with linker histone H1

2009 ◽  
Vol 424 (3) ◽  
pp. 367-374 ◽  
Author(s):  
Despina Smirlis ◽  
Haralabia Boleti ◽  
Maria Gaitanou ◽  
Manuel Soto ◽  
Ketty Soteriadou

Ran-GTPase regulates multiple cellular processes such as nucleocytoplasmic transport, mitotic spindle assembly, nuclear envelope assembly, cell-cycle progression and the mitotic checkpoint. The leishmanial Ran protein, in contrast with its mammalian counterpart which is predominately nucleoplasmic, is localized at the nuclear rim. The aim of the present study was to characterize the LdRan (Leishmania donovani Ran) orthologue with an emphasis on the Ran–histone association. LdRan was found to be developmentally regulated, expressed 3-fold less in the amastigote stage. LdRan overexpression caused a growth defect linked to a delayed S-phase progression in promastigotes as for its mammalian counterpart. We report for the first time that Ran interacts with a linker histone, histone H1, in vitro and that the two proteins co-localize at the parasite nuclear rim. Interaction of Ran with core histones H3 and H4, creating in metazoans a chromosomal Ran-GTP gradient important for mitotic spindle assembly, is speculative in Leishmania spp., not only because this parasite undergoes a closed mitosis, but also because the main localization of LdRan is different from that of core histone H3. Interaction of Ran with the leishmanial linker histone H1 (LeishH1) suggests that this association maybe involved in modulation of pathways other than those documented for the metazoan Ran–core histone association.

2012 ◽  
Vol 76 (12) ◽  
pp. 2261-2266 ◽  
Author(s):  
Eloise PRIETO ◽  
Kohji HIZUME ◽  
Toshiro KOBORI ◽  
S. H. YOSHIMURA ◽  
Kunio TAKEYASU

1999 ◽  
Vol 9 (9) ◽  
pp. 481-484 ◽  
Author(s):  
Petr Kalab ◽  
Robert T. Pu ◽  
Mary Dasso

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eva Höllmüller ◽  
Simon Geigges ◽  
Marie L. Niedermeier ◽  
Kai-Michael Kammer ◽  
Simon M. Kienle ◽  
...  

AbstractDecoding the role of histone posttranslational modifications (PTMs) is key to understand the fundamental process of epigenetic regulation. This is well studied for PTMs of core histones but not for linker histone H1 in general and its ubiquitylation in particular due to a lack of proper tools. Here, we report on the chemical synthesis of site-specifically mono-ubiquitylated H1.2 and identify its ubiquitin-dependent interactome on a proteome-wide scale. We show that site-specific ubiquitylation of H1 at position K64 modulates interactions with deubiquitylating enzymes and the deacetylase SIRT1. Moreover, it affects H1-dependent chromatosome assembly and phase separation resulting in a more open chromatosome conformation generally associated with a transcriptionally active chromatin state. In summary, we propose that site-specific ubiquitylation plays a general regulatory role for linker histone H1.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pierre Bourguet ◽  
Colette L. Picard ◽  
Ramesh Yelagandula ◽  
Thierry Pélissier ◽  
Zdravko J. Lorković ◽  
...  

AbstractIn flowering plants, heterochromatin is demarcated by the histone variant H2A.W, elevated levels of the linker histone H1, and specific epigenetic modifications, such as high levels of DNA methylation at both CG and non-CG sites. How H2A.W regulates heterochromatin organization and interacts with other heterochromatic features is unclear. Here, we create a h2a.w null mutant via CRISPR-Cas9, h2a.w-2, to analyze the in vivo function of H2A.W. We find that H2A.W antagonizes deposition of H1 at heterochromatin and that non-CG methylation and accessibility are moderately decreased in h2a.w-2 heterochromatin. Compared to H1 loss alone, combined loss of H1 and H2A.W greatly increases accessibility and facilitates non-CG DNA methylation in heterochromatin, suggesting co-regulation of heterochromatic features by H2A.W and H1. Our results suggest that H2A.W helps maintain optimal heterochromatin accessibility and DNA methylation by promoting chromatin compaction together with H1, while also inhibiting excessive H1 incorporation.


2020 ◽  
Vol 21 (19) ◽  
pp. 7330
Author(s):  
Roberta Noberini ◽  
Cristina Morales Torres ◽  
Evelyn Oliva Savoia ◽  
Stefania Brandini ◽  
Maria Giovanna Jodice ◽  
...  

Epigenetic aberrations have been recognized as important contributors to cancer onset and development, and increasing evidence suggests that linker histone H1 variants may serve as biomarkers useful for patient stratification, as well as play an important role as drivers in cancer. Although traditionally histone H1 levels have been studied using antibody-based methods and RNA expression, these approaches suffer from limitations. Mass spectrometry (MS)-based proteomics represents the ideal tool to accurately quantify relative changes in protein abundance within complex samples. In this study, we used a label-free quantification approach to simultaneously analyze all somatic histone H1 variants in clinical samples and verified its applicability to laser micro-dissected tissue areas containing as low as 1000 cells. We then applied it to breast cancer patient samples, identifying differences in linker histone variants patters in primary triple-negative breast tumors with and without relapse after chemotherapy. This study highlights how label-free quantitation by MS is a valuable option to accurately quantitate histone H1 levels in different types of clinical samples, including very low-abundance patient tissues.


2007 ◽  
Vol 53 (4) ◽  
pp. 199-205 ◽  
Author(s):  
Piotr Jedrzejczak ◽  
Bartosz Kempisty ◽  
Artur Bryja ◽  
M. Mostowska ◽  
Magdalena Depa-Martynow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document