The Golgi-associated long coiled-coil protein NECC1 participates in the control of the regulated secretory pathway in PC12 cells

2012 ◽  
Vol 443 (2) ◽  
pp. 387-396 ◽  
Author(s):  
David Cruz-García ◽  
Alberto Díaz-Ruiz ◽  
Yoana Rabanal-Ruiz ◽  
Juan R. Peinado ◽  
Francisco Gracia-Navarro ◽  
...  

Golgi-associated long coiled-coil proteins, often referred to as golgins, are involved in the maintenance of the structural organization of the Golgi apparatus and the regulation of membrane traffic events occurring in this organelle. Little information is available on the contribution of golgins to Golgi function in cells specialized in secretion such as endocrine cells or neurons. In the present study, we characterize the intracellular distribution as well as the biochemical and functional properties of a novel long coiled-coil protein present in neuroendocrine tissues, NECC1 (neuroendocrine long coiled-coil protein 1). The present study shows that NECC1 is a peripheral membrane protein displaying high stability to detergent extraction, which distributes across the Golgi apparatus in neuroendocrine cells. In addition, NECC1 partially localizes to post-Golgi carriers containing secretory cargo in PC12 cells. Overexpression of NECC1 resulted in the formation of juxtanuclear aggregates together with a slight fragmentation of the Golgi and a decrease in K+-stimulated hormone release. In contrast, NECC1 silencing did not alter Golgi architecture, but enhanced K+-stimulated hormone secretion in PC12 cells. In all, the results of the present study identify NECC1 as a novel component of the Golgi matrix and support a role for this protein as a negative modulator of the regulated trafficking of secretory cargo in neuroendocrine cells.

2001 ◽  
Vol 155 (6) ◽  
pp. 885-892 ◽  
Author(s):  
Francis A. Barr ◽  
Christian Preisinger ◽  
Robert Kopajtich ◽  
Roman Körner

The Golgi apparatus is a highly complex organelle comprised of a stack of cisternal membranes on the secretory pathway from the ER to the cell surface. This structure is maintained by an exoskeleton or Golgi matrix constructed from a family of coiled-coil proteins, the golgins, and other peripheral membrane components such as GRASP55 and GRASP65. Here we find that TMP21, p24a, and gp25L, members of the p24 cargo receptor family, are present in complexes with GRASP55 and GRASP65 in vivo. GRASPs interact directly with the cytoplasmic domains of specific p24 cargo receptors depending on their oligomeric state, and mutation of the GRASP binding site in the cytoplasmic tail of one of these, p24a, results in it being transported to the cell surface. These results suggest that one function of the Golgi matrix is to aid efficient retention or sequestration of p24 cargo receptors and other membrane proteins in the Golgi apparatus.


2006 ◽  
Vol 400 (1-2) ◽  
pp. 75-79 ◽  
Author(s):  
Jens Carsten Möller ◽  
Alex Krüttgen ◽  
Rosi Burmester ◽  
Joachim Weis ◽  
Wolfgang H. Oertel ◽  
...  

2001 ◽  
Vol 155 (6) ◽  
pp. 877-884 ◽  
Author(s):  
Benjamin Short ◽  
Christian Preisinger ◽  
Roman Körner ◽  
Robert Kopajtich ◽  
Olwyn Byron ◽  
...  

Membrane traffic between the endoplasmic reticulum (ER) and Golgi apparatus and through the Golgi apparatus is a highly regulated process controlled by members of the rab GTPase family. The GTP form of rab1 regulates ER to Golgi transport by interaction with the vesicle tethering factor p115 and the cis-Golgi matrix protein GM130, also part of a complex with GRASP65 important for the organization of cis-Golgi cisternae. Here, we find that a novel coiled-coil protein golgin-45 interacts with the medial-Golgi matrix protein GRASP55 and the GTP form of rab2 but not other Golgi rab proteins. Depletion of golgin-45 disrupts the Golgi apparatus and causes a block in secretory protein transport. These results demonstrate that GRASP55 and golgin-45 form a rab2 effector complex on medial-Golgi essential for normal protein transport and Golgi structure.


1989 ◽  
Vol 108 (5) ◽  
pp. 1647-1655 ◽  
Author(s):  
T J Stoller ◽  
D Shields

We have investigated the role of the somatostatin propeptide in mediating intracellular transport and sorting to the regulated secretory pathway. Using a retroviral expression vector, two fusion proteins were expressed in rat pituitary (GH3) cells: a control protein consisting of the beta-lactamase signal peptide fused to chimpanzee alpha-globin (142 amino acids); and a chimera of the somatostatin signal peptide and proregion (82 amino acids) fused to alpha-globin. Control globin was translocated into the endoplasmic reticulum as determined by accurate cleavage of its signal peptide; however, alpha-globin was not secreted but was rapidly and quantitatively degraded intracellularly with a t 1/2 of 4-5 min. Globin degradation was insensitive to chloroquine, a drug which inhibits lysosomal proteases, but was inhibited at 16 degrees C suggesting proteolysis occurred during transport to the cis-Golgi apparatus. In contrast to the control globin, approximately 30% of the somatostatin propeptide-globin fusion protein was transported to the distal elements of the Golgi apparatus where it was endoproteolytically processed. Processing of the chimera occurred in an acidic intracellular compartment since cleavage was inhibited by 25 microM chloroquine. 60% of the transported chimera was cleaved at the Arg-Lys processing site in native prosomatostatin yielding "mature" alpha-globin. Most significantly, approximately 50% of processed alpha-globin was sorted to the regulated pathway and secreted in response to 8-Br-cAMP. We conclude that the somatostatin propeptide mediated transport of alpha-globin from the endoplasmic reticulum to the trans-Golgi network by protecting molecules from degradation and in addition, facilitated packaging of alpha-globin into vesicles whose secretion was stimulated by cAMP.


Neuropeptides ◽  
2011 ◽  
Vol 45 (4) ◽  
pp. 273-279 ◽  
Author(s):  
Elías H. Blanco ◽  
Juan Pablo Zúñiga ◽  
María Estela Andrés ◽  
Alejandra R. Alvarez ◽  
Katia Gysling

Sign in / Sign up

Export Citation Format

Share Document