scholarly journals Golgi matrix proteins interact with p24 cargo receptors and aid their efficient retention in the Golgi apparatus

2001 ◽  
Vol 155 (6) ◽  
pp. 885-892 ◽  
Author(s):  
Francis A. Barr ◽  
Christian Preisinger ◽  
Robert Kopajtich ◽  
Roman Körner

The Golgi apparatus is a highly complex organelle comprised of a stack of cisternal membranes on the secretory pathway from the ER to the cell surface. This structure is maintained by an exoskeleton or Golgi matrix constructed from a family of coiled-coil proteins, the golgins, and other peripheral membrane components such as GRASP55 and GRASP65. Here we find that TMP21, p24a, and gp25L, members of the p24 cargo receptor family, are present in complexes with GRASP55 and GRASP65 in vivo. GRASPs interact directly with the cytoplasmic domains of specific p24 cargo receptors depending on their oligomeric state, and mutation of the GRASP binding site in the cytoplasmic tail of one of these, p24a, results in it being transported to the cell surface. These results suggest that one function of the Golgi matrix is to aid efficient retention or sequestration of p24 cargo receptors and other membrane proteins in the Golgi apparatus.

2012 ◽  
Vol 443 (2) ◽  
pp. 387-396 ◽  
Author(s):  
David Cruz-García ◽  
Alberto Díaz-Ruiz ◽  
Yoana Rabanal-Ruiz ◽  
Juan R. Peinado ◽  
Francisco Gracia-Navarro ◽  
...  

Golgi-associated long coiled-coil proteins, often referred to as golgins, are involved in the maintenance of the structural organization of the Golgi apparatus and the regulation of membrane traffic events occurring in this organelle. Little information is available on the contribution of golgins to Golgi function in cells specialized in secretion such as endocrine cells or neurons. In the present study, we characterize the intracellular distribution as well as the biochemical and functional properties of a novel long coiled-coil protein present in neuroendocrine tissues, NECC1 (neuroendocrine long coiled-coil protein 1). The present study shows that NECC1 is a peripheral membrane protein displaying high stability to detergent extraction, which distributes across the Golgi apparatus in neuroendocrine cells. In addition, NECC1 partially localizes to post-Golgi carriers containing secretory cargo in PC12 cells. Overexpression of NECC1 resulted in the formation of juxtanuclear aggregates together with a slight fragmentation of the Golgi and a decrease in K+-stimulated hormone release. In contrast, NECC1 silencing did not alter Golgi architecture, but enhanced K+-stimulated hormone secretion in PC12 cells. In all, the results of the present study identify NECC1 as a novel component of the Golgi matrix and support a role for this protein as a negative modulator of the regulated trafficking of secretory cargo in neuroendocrine cells.


2009 ◽  
Vol 284 (24) ◽  
pp. 16369-16376 ◽  
Author(s):  
Xuebo Hu ◽  
Sungkwon Kang ◽  
Xiaoyue Chen ◽  
Charles B. Shoemaker ◽  
Moonsoo M. Jin

A quantitative in vivo method for detecting protein-protein interactions will enhance our understanding of protein interaction networks and facilitate affinity maturation as well as designing new interaction pairs. We have developed a novel platform, dubbed “yeast surface two-hybrid (YS2H),” to enable a quantitative measurement of pairwise protein interactions via the secretory pathway by expressing one protein (bait) anchored to the cell wall and the other (prey) in soluble form. In YS2H, the prey is released either outside of the cells or remains on the cell surface by virtue of its binding to the bait. The strength of their interaction is measured by antibody binding to the epitope tag appended to the prey or direct readout of split green fluorescence protein (GFP) complementation. When two α-helices forming coiled coils were expressed as a pair of prey and bait, the amount of the prey in complex with the bait progressively decreased as the affinity changes from 100 pm to 10 μm. With GFP complementation assay, we were able to discriminate a 6-log difference in binding affinities in the range of 100 pm to 100 μm. The affinity estimated from the level of antibody binding to fusion tags was in good agreement with that measured in solution using a surface plasmon resonance technique. In contrast, the level of GFP complementation linearly increased with the on-rate of coiled coil interactions, likely because of the irreversible nature of GFP reconstitution. Furthermore, we demonstrate the use of YS2H in exploring the nature of antigen recognition by antibodies and activation allostery in integrins and in isolating heavy chain-only antibodies against botulinum neurotoxin.


2003 ◽  
Vol 14 (12) ◽  
pp. 5011-5018 ◽  
Author(s):  
Sapna Puri ◽  
Adam D. Linstedt

It is unclear whether the mammalian Golgi apparatus can form de novo from the ER or whether it requires a preassembled Golgi matrix. As a test, we assayed Golgi reassembly after forced redistribution of Golgi matrix proteins into the ER. Two conditions were used. In one, ER redistribution was achieved using a combination of brefeldin A (BFA) to cause Golgi collapse and H89 to block ER export. Unlike brefeldin A alone, which leaves matrix proteins in relatively large remnant structures outside the ER, the addition of H89 to BFA-treated cells caused ER accumulation of all Golgi markers tested. In the other, clofibrate treatment induced ER redistribution of matrix and nonmatrix proteins. Significantly, Golgi reassembly after either treatment was robust, implying that the Golgi has the capacity to form de novo from the ER. Furthermore, matrix proteins reemerged from the ER with faster ER exit rates. This, together with the sensitivity of BFA remnants to ER export blockade, suggests that presence of matrix proteins in BFA remnants is due to cycling via the ER and preferential ER export rather than their stable assembly in a matrix outside the ER. In summary, the Golgi apparatus appears capable of efficient self-assembly.


1999 ◽  
Vol 10 (4) ◽  
pp. 1043-1059 ◽  
Author(s):  
Wolfgang P. Barz ◽  
Peter Walter

Many eukaryotic cell surface proteins are anchored in the lipid bilayer through glycosylphosphatidylinositol (GPI). GPI anchors are covalently attached in the endoplasmic reticulum (ER). The modified proteins are then transported through the secretory pathway to the cell surface. We have identified two genes inSaccharomyces cerevisiae, LAG1 and a novel gene termed DGT1 (for “delayed GPI-anchored protein transport”), encoding structurally related proteins with multiple membrane-spanning domains. Both proteins are localized to the ER, as demonstrated by immunofluorescence microscopy. Deletion of either gene caused no detectable phenotype, whereas lag1Δ dgt1Δ cells displayed growth defects and a significant delay in ER-to-Golgi transport of GPI-anchored proteins, suggesting thatLAG1 and DGT1 encode functionally redundant or overlapping proteins. The rate of GPI anchor attachment was not affected, nor was the transport rate of several non–GPI-anchored proteins. Consistent with a role of Lag1p and Dgt1p in GPI-anchored protein transport, lag1Δ dgt1Δ cells deposit abnormal, multilayered cell walls. Both proteins have significant sequence similarity to TRAM, a mammalian membrane protein thought to be involved in protein translocation across the ER membrane. In vivo translocation studies, however, did not detect any defects in protein translocation in lag1Δ dgt1Δcells, suggesting that neither yeast gene plays a role in this process. Instead, we propose that Lag1p and Dgt1p facilitate efficient ER-to-Golgi transport of GPI-anchored proteins.


2016 ◽  
Vol 114 (2) ◽  
pp. 346-351 ◽  
Author(s):  
Chunyi Liu ◽  
Mei Mei ◽  
Qiuling Li ◽  
Peristera Roboti ◽  
Qianqian Pang ◽  
...  

The Golgi apparatus lies at the heart of the secretory pathway where it is required for secretory trafficking and cargo modification. Disruption of Golgi architecture and function has been widely observed in neurodegenerative disease, but whether Golgi dysfunction is causal with regard to the neurodegenerative process, or is simply a manifestation of neuronal death, remains unclear. Here we report that targeted loss of the golgin GM130 leads to a profound neurological phenotype in mice. Global KO of mouse GM130 results in developmental delay, severe ataxia, and postnatal death. We further show that selective deletion of GM130 in neurons causes fragmentation and defective positioning of the Golgi apparatus, impaired secretory trafficking, and dendritic atrophy in Purkinje cells. These cellular defects manifest as reduced cerebellar size and Purkinje cell number, leading to ataxia. Purkinje cell loss and ataxia first appear during postnatal development but progressively worsen with age. Our data therefore indicate that targeted disruption of the mammalian Golgi apparatus and secretory traffic results in neuronal degeneration in vivo, supporting the view that Golgi dysfunction can play a causative role in neurodegeneration.


2001 ◽  
Vol 155 (6) ◽  
pp. 877-884 ◽  
Author(s):  
Benjamin Short ◽  
Christian Preisinger ◽  
Roman Körner ◽  
Robert Kopajtich ◽  
Olwyn Byron ◽  
...  

Membrane traffic between the endoplasmic reticulum (ER) and Golgi apparatus and through the Golgi apparatus is a highly regulated process controlled by members of the rab GTPase family. The GTP form of rab1 regulates ER to Golgi transport by interaction with the vesicle tethering factor p115 and the cis-Golgi matrix protein GM130, also part of a complex with GRASP65 important for the organization of cis-Golgi cisternae. Here, we find that a novel coiled-coil protein golgin-45 interacts with the medial-Golgi matrix protein GRASP55 and the GTP form of rab2 but not other Golgi rab proteins. Depletion of golgin-45 disrupts the Golgi apparatus and causes a block in secretory protein transport. These results demonstrate that GRASP55 and golgin-45 form a rab2 effector complex on medial-Golgi essential for normal protein transport and Golgi structure.


Author(s):  
J.J.M. Bergeron ◽  
B.I. Posner ◽  
Jacques Paiement ◽  
R. Sikstrom ◽  
M. Khan

Recent studies on purified subcellular fractions of hepatic Golgi apparatus have provided insight into the functioning of the Golgi apparatus in vivo.The hepatocyte is the site of synthesis of most circulating plasma proteins. On a total protein basis, purified Golgi fractions revealed mainly secretory content (albumin, transferrin and other plasma proteins) as major constituents. After an in vivo injection of radiolabeled leucine, newly synthesized secretory protein followed a temporal route from cis to trans regions of Golgi apparatus before appearance in the plasma. This route was revealed by studies on disrupted Golgi fractions enriched in disparate regions of the Golgi apparatus.The terminal glycosylation of secretory glcyoproteins (e.g. transferrin) can be studied by observing the transfer of UDP-(3H)-galactose to endogenous acceptors within Golgi fractions. Transfer was shown to occur to a glycolipid (dolichyl galactosyl phosphate) probably on the cytosolic aspect of the Golgi membrane. Translocation of the labeled galactose across the membrane coincided with fusion of Golgi saccules in vitro. It is felt that during the process of Golgi membrane fusion, inverted lipid- micellar membrane structures translocate the dolichyl galactosyl phosphate from a cytosolic to a luminal orientation. Luminally oriented dolichyl galactosyl phosphate would then serve as substrate for galactose transfer to intraluminal glycopeptide acceptors via intraluminal galactosyl transferase enzyme.


2021 ◽  
Author(s):  
luis felipe santos mendes ◽  
Mariana R B Batista ◽  
Emanuel Kava ◽  
Lucas Bleicher ◽  
Mariana C Micheletto ◽  
...  

The Golgi complex is a membranous organelle located in the heart of the eukaryotic secretory pathway. A subfamily of the Golgi matrix proteins, called GRASPs, are key players in the stress-induced unconventional secretion, the Golgi dynamics during mitosis/apoptosis, and Golgi ribbon formation. The Golgi ribbon is vertebrate-specific and correlates with the appearance of two GRASP paralogs (GRASP55/GRASP65) and two coiled-coil Golgins (GM130/Golgin45), which interact with each other in vivo. Although essential for the Golgi ribbon formation and the increase in Golgi structural complexity, the molecular details leading to their appearance only in this subphylum are still unknown. Moreover, despite the new functionalities supported by the GRASP paralogy, little is known about the structural and evolutionary differences between these paralogues. In this context, we used ancestor sequence reconstruction and several biophysical/biochemical approaches to assess the evolution of the GRASP structure, flexibility, and how they started anchoring their Golgin partners. Our data showed that the Golgins appeared in evolution and were anchored by the single GRASP ancestor before gorasp gene duplication and divergence in Metazoans. After the gorasp divergence, variations inside the GRASP binding pocket determined which paralogue would recruit each Golgin partner (GRASP55 with Golgin45 and GRASP65 with GM130). These interactions are responsible for the protein's specific Golgi locations and the appearance of the Golgi ribbon. We also suggest that the capacity of GRASPs to form supramolecular structures is a long-standing feature, which likely affects GRASP's participation as a trigger of the stress-induced secretory pathway.


2015 ◽  
Vol 26 (3) ◽  
pp. 537-553 ◽  
Author(s):  
Keisuke Sato ◽  
Peristera Roboti ◽  
Alexander A. Mironov ◽  
Martin Lowe

Golgins are extended coiled-coil proteins believed to participate in membrane-tethering events at the Golgi apparatus. However, the importance of golgin-mediated tethering remains poorly defined, and alternative functions for golgins have been proposed. Moreover, although golgins bind to Rab GTPases, the functional significance of Rab binding has yet to be determined. In this study, we show that depletion of the golgin GMAP-210 causes a loss of Golgi cisternae and accumulation of numerous vesicles. GMAP-210 function in vivo is dependent upon its ability to tether membranes, which is mediated exclusively by the amino-terminal ALPS motif. Binding to Rab2 is also important for GMAP-210 function, although it is dispensable for tethering per se. GMAP-210 length is also functionally important in vivo. Together our results indicate a key role for GMAP-210–mediated membrane tethering in maintaining Golgi structure and support a role for Rab2 binding in linking tethering with downstream docking and fusion events at the Golgi apparatus.


1985 ◽  
Vol 100 (5) ◽  
pp. 1499-1507 ◽  
Author(s):  
D R Critchley ◽  
P G Nelson ◽  
W H Habig ◽  
P H Fishman

We examined the nature of the tetanus toxin receptor in primary cultures of mouse spinal cord by ligand blotting techniques. Membrane components were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose sheets, which were overlaid with 125I-labeled tetanus toxin. The toxin bound only to material at or near the dye front, which was lost when the cells were delipidated before electrophoresis. Gangliosides purified from the lipid extract were separated by thin-layer chromatography and the chromatogram was overlaid with 125I-toxin. The toxin bound to gangliosides corresponding to GD1b and GT1b. Similar results were obtained with brain membranes; thus, gangliosides rather than glycoproteins appear to be the toxin receptors both in vivo and in neuronal cell cultures. To follow the fate of tetanus toxin bound to cultured neurons, we developed an assay to measure cell-surface and internalized toxin. Cells were incubated with tetanus toxin at 0 degree C, washed, and sequentially exposed to antitoxin and 125I-labeled protein A. Using this assay, we found that much of the toxin initially bound to cell surface disappeared rapidly when the temperature was raised to 37 degrees C but not when the cells were kept at 0 degree C. Some of the toxin was internalized and could only be detected by our treating the cells with Triton X-100 before adding anti-toxin. Experiments with 125I-tetanus toxin showed that a substantial amount of the toxin bound at 0 degree C dissociated into the medium upon warming of the cells. Using immunofluorescence, we confirmed that some of the bound toxin was internalized within 15 min and accumulated in discrete structures. These structures did not appear to be lysosomes, as the cell-associated toxin had a long half-life and 90% of the radioactivity released into the medium was precipitated by trichloroacetic acid. The rapid internalization of tetanus toxin into a subcellular compartment where it escapes degradation may be important for its mechanism of action.


Sign in / Sign up

Export Citation Format

Share Document