scholarly journals A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic

2001 ◽  
Vol 155 (6) ◽  
pp. 877-884 ◽  
Author(s):  
Benjamin Short ◽  
Christian Preisinger ◽  
Roman Körner ◽  
Robert Kopajtich ◽  
Olwyn Byron ◽  
...  

Membrane traffic between the endoplasmic reticulum (ER) and Golgi apparatus and through the Golgi apparatus is a highly regulated process controlled by members of the rab GTPase family. The GTP form of rab1 regulates ER to Golgi transport by interaction with the vesicle tethering factor p115 and the cis-Golgi matrix protein GM130, also part of a complex with GRASP65 important for the organization of cis-Golgi cisternae. Here, we find that a novel coiled-coil protein golgin-45 interacts with the medial-Golgi matrix protein GRASP55 and the GTP form of rab2 but not other Golgi rab proteins. Depletion of golgin-45 disrupts the Golgi apparatus and causes a block in secretory protein transport. These results demonstrate that GRASP55 and golgin-45 form a rab2 effector complex on medial-Golgi essential for normal protein transport and Golgi structure.

2004 ◽  
Vol 164 (7) ◽  
pp. 1009-1020 ◽  
Author(s):  
Christian Preisinger ◽  
Benjamin Short ◽  
Veerle De Corte ◽  
Erik Bruyneel ◽  
Alexander Haas ◽  
...  

The Golgi apparatus has long been suggested to be important for directing secretion to specific sites on the plasma membrane in response to extracellular signaling events. However, the mechanisms by which signaling events are coordinated with Golgi apparatus function remain poorly understood. Here, we identify a scaffolding function for the Golgi matrix protein GM130 that sheds light on how such signaling events may be regulated. We show that the mammalian Ste20 kinases YSK1 and MST4 target to the Golgi apparatus via the Golgi matrix protein GM130. In addition, GM130 binding activates these kinases by promoting autophosphorylation of a conserved threonine within the T-loop. Interference with YSK1 function perturbs perinuclear Golgi organization, cell migration, and invasion into type I collagen. A biochemical screen identifies 14-3-3ζ as a specific substrate for YSK1 that localizes to the Golgi apparatus, and potentially links YSK1 signaling at the Golgi apparatus with protein transport events, cell adhesion, and polarity complexes important for cell migration.


2011 ◽  
Vol 13 (9) ◽  
pp. 1429-1439 ◽  
Author(s):  
Abigail Clements ◽  
Katherine Smollett ◽  
Sau Fung Lee ◽  
Elizabeth L. Hartland ◽  
Martin Lowe ◽  
...  

2012 ◽  
Vol 443 (2) ◽  
pp. 387-396 ◽  
Author(s):  
David Cruz-García ◽  
Alberto Díaz-Ruiz ◽  
Yoana Rabanal-Ruiz ◽  
Juan R. Peinado ◽  
Francisco Gracia-Navarro ◽  
...  

Golgi-associated long coiled-coil proteins, often referred to as golgins, are involved in the maintenance of the structural organization of the Golgi apparatus and the regulation of membrane traffic events occurring in this organelle. Little information is available on the contribution of golgins to Golgi function in cells specialized in secretion such as endocrine cells or neurons. In the present study, we characterize the intracellular distribution as well as the biochemical and functional properties of a novel long coiled-coil protein present in neuroendocrine tissues, NECC1 (neuroendocrine long coiled-coil protein 1). The present study shows that NECC1 is a peripheral membrane protein displaying high stability to detergent extraction, which distributes across the Golgi apparatus in neuroendocrine cells. In addition, NECC1 partially localizes to post-Golgi carriers containing secretory cargo in PC12 cells. Overexpression of NECC1 resulted in the formation of juxtanuclear aggregates together with a slight fragmentation of the Golgi and a decrease in K+-stimulated hormone release. In contrast, NECC1 silencing did not alter Golgi architecture, but enhanced K+-stimulated hormone secretion in PC12 cells. In all, the results of the present study identify NECC1 as a novel component of the Golgi matrix and support a role for this protein as a negative modulator of the regulated trafficking of secretory cargo in neuroendocrine cells.


2015 ◽  
Vol 26 (3) ◽  
pp. 537-553 ◽  
Author(s):  
Keisuke Sato ◽  
Peristera Roboti ◽  
Alexander A. Mironov ◽  
Martin Lowe

Golgins are extended coiled-coil proteins believed to participate in membrane-tethering events at the Golgi apparatus. However, the importance of golgin-mediated tethering remains poorly defined, and alternative functions for golgins have been proposed. Moreover, although golgins bind to Rab GTPases, the functional significance of Rab binding has yet to be determined. In this study, we show that depletion of the golgin GMAP-210 causes a loss of Golgi cisternae and accumulation of numerous vesicles. GMAP-210 function in vivo is dependent upon its ability to tether membranes, which is mediated exclusively by the amino-terminal ALPS motif. Binding to Rab2 is also important for GMAP-210 function, although it is dispensable for tethering per se. GMAP-210 length is also functionally important in vivo. Together our results indicate a key role for GMAP-210–mediated membrane tethering in maintaining Golgi structure and support a role for Rab2 binding in linking tethering with downstream docking and fusion events at the Golgi apparatus.


2001 ◽  
Vol 155 (6) ◽  
pp. 885-892 ◽  
Author(s):  
Francis A. Barr ◽  
Christian Preisinger ◽  
Robert Kopajtich ◽  
Roman Körner

The Golgi apparatus is a highly complex organelle comprised of a stack of cisternal membranes on the secretory pathway from the ER to the cell surface. This structure is maintained by an exoskeleton or Golgi matrix constructed from a family of coiled-coil proteins, the golgins, and other peripheral membrane components such as GRASP55 and GRASP65. Here we find that TMP21, p24a, and gp25L, members of the p24 cargo receptor family, are present in complexes with GRASP55 and GRASP65 in vivo. GRASPs interact directly with the cytoplasmic domains of specific p24 cargo receptors depending on their oligomeric state, and mutation of the GRASP binding site in the cytoplasmic tail of one of these, p24a, results in it being transported to the cell surface. These results suggest that one function of the Golgi matrix is to aid efficient retention or sequestration of p24 cargo receptors and other membrane proteins in the Golgi apparatus.


2003 ◽  
Vol 160 (2) ◽  
pp. 201-212 ◽  
Author(s):  
Aipo Diao ◽  
Dinah Rahman ◽  
Darryl J.C. Pappin ◽  
John Lucocq ◽  
Martin Lowe

Fragmentation of the mammalian Golgi apparatus during mitosis requires the phosphorylation of a specific subset of Golgi-associated proteins. We have used a biochemical approach to characterize these proteins and report here the identification of golgin-84 as a novel mitotic target. Using cryoelectron microscopy we could localize golgin-84 to the cis-Golgi network and found that it is enriched on tubules emanating from the lateral edges of, and often connecting, Golgi stacks. Golgin-84 binds to active rab1 but not cis-Golgi matrix proteins. Overexpression or depletion of golgin-84 results in fragmentation of the Golgi ribbon. Strikingly, the Golgi ribbon is converted into mini-stacks constituting only ∼25% of the volume of a normal Golgi apparatus upon golgin-84 depletion. These mini-stacks are able to carry out protein transport, though with reduced efficiency compared with a normal Golgi apparatus. Our results suggest that golgin-84 plays a key role in the assembly and maintenance of the Golgi ribbon in mammalian cells.


2007 ◽  
Vol 18 (4) ◽  
pp. 1261-1271 ◽  
Author(s):  
Xueyi Li ◽  
Dora Kaloyanova ◽  
Martin van Eijk ◽  
Ruud Eerland ◽  
Gisou van der Goot ◽  
...  

The Golgi apparatus consists of a series of flattened cisternal membranes that are aligned in parallel to form stacks. Cytosolic-oriented Golgi-associated proteins have been identified that may coordinate or maintain the Golgi architecture. Here, we describe a novel GPI-anchored protein, Golgi-resident GPI-anchored protein (GREG) that has a brefeldin A-sensitive Golgi localization. GREG resides in the Golgi lumen as a cis-oriented homodimer, due to strong interactions between coiled-coil regions in the C termini. Dimerization of GREG as well as its Golgi localization depends on a unique tandem repeat sequence within the coiled-coil region. RNA-mediated interference of GREG expression or expression of GREG mutants reveals an essential role for GREG in maintenance of the Golgi integrity. Under these conditions, secretion of the vesicular stomatitis virus glycoprotein protein as a marker for protein transport along the secretory pathway is inhibited, suggesting a loss of Golgi function as well. These results imply the involvement of a luminal protein in Golgi structure and function.


2020 ◽  
Author(s):  
Prathyush Pothukuchi ◽  
Ilenia Agliarulo ◽  
Marinella Pirozzi ◽  
Riccardo Rizzo ◽  
Domenico Russo ◽  
...  

AbstractGlycans are important regulators of cell and organismal physiology. This requires that the glycan biosynthesis be controlled to achieve specific cellular glycan profiles. Glycans are assembled in the Golgi apparatus on secretory cargoes that traverse it. The mechanisms by which the Golgi apparatus ensures cell- and cargo-specific glycosylation remain obscure. We investigated how the Golgi apparatus regulates glycosylation by studying biosynthesis of glycosphingolipids, glycosylated lipids with critical roles in signalling and differentiation. We identified the Golgi matrix protein GRASP55 as a controller of sphingolipid glycosylation by regulating the compartmentalized localization of key sphingolipid biosynthetic enzymes in the Golgi. GRASP55 controls the localization of the enzymes by binding to them and regulating their entry into peri-Golgi vesicles. Impairing GRASP55-enzyme interaction decompartmentalizes these enzymes, changes the substrate flux across competing glycosylation pathways that results in alteration of the cellular glycosphingolipid profile. This GRASP55 regulated pathway of enzyme compartmentalization allows cells to make cell density-dependent adaptations in glycosphingolipid biosynthesis to suit cell growth needs. Thus, the Golgi apparatus controls the cellular glycan (glycosphingolipid) profile by governing competition between biosynthetic reactions through regulated changes in enzyme compartmentalization.


1995 ◽  
Vol 131 (6) ◽  
pp. 1715-1726 ◽  
Author(s):  
N Nakamura ◽  
C Rabouille ◽  
R Watson ◽  
T Nilsson ◽  
N Hui ◽  
...  

Antisera raised to a detergent- and salt-resistant matrix fraction from rat liver Golgi stacks were used to screen an expression library from rat liver cDNA. A full-length clone was obtained encoding a protein of 130 kD (termed GM130), the COOH-terminal domain of which was highly homologous to a Golgi human auto-antigen, golgin-95 (Fritzler et al., 1993). Biochemical data showed that GM130 is a peripheral cytoplasmic protein that is tightly bound to Golgi membranes and part of a larger oligomeric complex. Predictions from the protein sequence suggest that GM130 is an extended rod-like protein with coiled-coil domains. Immunofluorescence microscopy showed partial overlap with medial- and trans-Golgi markers but almost complete overlap with the cis-Golgi network (CGN) marker, syntaxin5. Immunoelectron microscopy confirmed this location showing that most of the GM130 was located in the CGN and in one or two cisternae on the cis-side of the Golgi stack. GM130 was not re-distributed to the ER in the presence of brefeldin A but maintained its overlap with syntaxin5 and a partial overlap with the ER-Golgi intermediate compartment marker, p53. Together these results suggest that GM130 is part of a cis-Golgi matrix and has a role in maintaining cis-Golgi structure.


2001 ◽  
Vol 276 (15) ◽  
pp. 12100-12112 ◽  
Author(s):  
Monica Calero ◽  
Gary R. Whittaker ◽  
Ruth N. Collins

Rab proteins are small GTPases that are essential elements of the protein transport machinery of eukaryotic cells. Each round of membrane transport requires a cycle of Rab protein nucleotide binding and hydrolysis. We have recently characterized a protein, Yip1p, which appears to play a role in Rab-mediated membrane transport inSaccharomyces cerevisiae. In this study, we report the identification of a Yip1p-associated protein, Yop1p. Yop1p is a membrane protein with a hydrophilic region at its N terminus through which it interacts specifically with the cytosolic domain of Yip1p. Yop1p could also be coprecipitated with Rab proteins from total cellular lysates. TheTB2gene is the human homolog of Yop1p (Kinzler, K. W., Nilbert, M. C., Su, L.-K., Vogelstein, B., Bryan, T. M., Levey, D. B., Smith, K. J., Preisinger, A. C., Hedge, P., McKechnie, D., Finniear, R., Markham, A., Groffen, J., Boguski, M. S., Altschul, S. F., Horii, A., Ando, H. M., Y., Miki, Y., Nishisho, I., and Nakamura, Y. (1991)Science253, 661–665). Our data demonstrate that Yop1p negatively regulates cell growth. Disruption ofYOP1has no apparent effect on cell viability, while overexpression results in cell death, accumulation of internal cell membranes, and a block in membrane traffic. These results suggest that Yop1p acts in conjunction with Yip1p to mediate a common step in membrane traffic.


Sign in / Sign up

Export Citation Format

Share Document