scholarly journals Cartilage proteoglycan binding region and link protein. Radioimmunoassays and the detection of masked determinants in aggregates

1983 ◽  
Vol 213 (2) ◽  
pp. 371-378 ◽  
Author(s):  
A Ratcliffe ◽  
T Hardingham

Antibodies have been raised in rabbits to the hyaluronate-binding region and link-protein components of aggregated proteoglycans from pig laryngeal cartilage. The anti-(binding region) antibodies did not bind 125I-labelled link protein, nor was 125I-labelled binding region bound by the anti-(link protein) antibodies. The antisera were applied in sensitive inhibition radioimmunoassays to determine binding region and link protein in purified proteoglycan preparations. With intact proteoglycan aggregates, the antigenic sites of link protein, and to a lesser extent binding region, were masked. Heat treatment in the presence of sodium dodecyl sulphate (0.025%, w/v) was found to overcome this masking, thereby allowing the determination of link protein and binding region in aggregated proteoglycan preparations in pure and impure samples.

1981 ◽  
Vol 197 (3) ◽  
pp. 669-674 ◽  
Author(s):  
A Franzén ◽  
S Björnsson ◽  
D Heinegård

Cartilage proteoglycan aggregate formation was studied by zonal rate centrifugation in sucrose gradients. Proteoglycan aggregates, monomers and proteins could be resolved. It was shown that the optimal proportion of hyaluronic acid for proteoglycan aggregate formation was about 1% of proteoglycan dry weight. The reaggregation of dissociated proteoglycan aggregate A1 fraction was markedly concentration-dependent and even at 9 mg/ml only about 90% of the aggregates were reformed. The lowest proportion of link protein required for maximal formation of link-stabilized proteoglycan aggregates was 1.5% of proteoglycan dry weight. It was separately shown that link protein co-sedimented with the proteoglycan monomer. By competition with isolated hyaluronic acid-binding-region fragments, a proportion of the link proteins was removed from the proteoglycan monomers, indicating that the link protein binds to the hyaluronic acid-binding region of the proteoglycan monomer.


1989 ◽  
Vol 259 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Q Nguyen ◽  
G Murphy ◽  
P J Roughley ◽  
J S Mort

Cartilage proteoglycan aggregates were subjected to degradation by a metalloproteinase, capable of degrading proteoglycan, released from cartilage in culture. This proteinase was demonstrated to be immunologically identical with fibroblast stromelysin. An early release of hyaluronic acid-binding region and large glycosaminoglycan-attachment regions was observed. With increasing time the glycosaminoglycan-attachment regions were digested into smaller fragments and the hyaluronic acid-binding regions accumulated. The degradation of link proteins also occurred concomitantly with these events. Link proteins were converted into a component of similar size to that of the smallest native link protein component. N-Terminal sequence analysis of the three human link protein components indicated that they are all derived from the same protein core, which is closely homologous to that of the rat chondrosarcoma link protein. The two larger link proteins (Mr 48,000 and 44,000) contain the same N-terminal sequence, but they differ by the apparent presence of an N-linked oligosaccharide at residue 6 of the largest link protein component. The smallest link protein (Mr 41,000), however, has an N-terminal sequence equivalent to that commencing at residue 17 in the larger link proteins. It was found that the cartilage metalloproteinase cleaves link proteins in human neonatal cartilage proteoglycan aggregates at the His-16-Ile-17 bond, the same position at which the smallest link protein component appears to be derived naturally from the two larger link protein components. These results suggest that stromelysin secreted by chondrocytes can account for the increased accumulation of hyaluronic acid-binding regions and much of the degradation of link protein observed during aging within human articular cartilage.


Sign in / Sign up

Export Citation Format

Share Document