scholarly journals Stimulation of prostaglandin E2 synthesis by exogenous phospholipase A2 and C in rabbit kidney medulla slices

1984 ◽  
Vol 218 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Y Fujimoto ◽  
N Akamatsu ◽  
A Hattori ◽  
T Fujita

We have investigated the effects of phospholipase A2 and C on the synthesis of prostaglandin E2 in rabbit kidney medulla and the release of fatty acids from the medulla slices. Exogenous phospholipase A2 [from Naja naja (Indian cobra) venom] and phospholipase C (from Clostridium welchii) stimulated prostaglandin E2 production in a dose-dependent manner. At the maximal effective concentrations (0.5 unit of phospholipase A2/ml, 2 units of phospholipase C/ml), phospholipase C increased prostaglandin E2 formation to the level observed with phospholipase A2. Phospholipase A2 enhanced the release only of unsaturated fatty acids, whereas phospholipase C stimulated the release of individual free fatty acids (C 16:0, C 18:0, C 18:1, C 18:2 and C 20:4). Moreover, p-bromophenacyl bromide inhibited phospholipase A2-stimulated prostaglandin E2 production and the release of fatty acids, but it had no influence on prostaglandin E2 formation and the release of fatty acids increased by phospholipase C, indicating that the stimulatory effect of phospholipase C is not mediated through the activation of endogenous phospholipase A2. These results suggest the presence of diacylglycerol lipase and monoacylglycerol lipase in the kidney and the importance of this pathway in prostaglandin synthesis by the kidney.

1985 ◽  
Vol 232 (3) ◽  
pp. 625-628 ◽  
Author(s):  
Y Fujimoto ◽  
H Uno ◽  
C Kagen ◽  
T Ueno ◽  
T Fujita

The effect of diarachidonin on the synthesis of prostaglandin E2 in rabbit kidney medulla slices was examined. The addition of diarachidonin stimulated prostaglandin E2 production in a dose-dependent manner. At three concentrations (10, 50 and 100 microM), increases in prostaglandin E2 formation induced by exogenous diarachidonin were 2-fold greater than those induced by exogenous arachidonic acid. Diacylglycerol or phosphatidic acid from egg lecithin had little or no effect on prostaglandin E2 production. Moreover, EGTA failed to inhibit diarachidonin-stimulated prostaglandin E2 formation, indicating that the stimulatory effect of diarachidonin is not mediated through the activation of endogenous phospholipase A2 (including phosphatidic acid-specific phospholipase A2). These results are discussed in the light of our former hypothesis that arachidonic acid release from kidney medulla phospholipids might occur through the sequential action of a phospholipase C coupled to diacylglycerol and monoacylglycerol lipases [Fujimoto, Akamatsu, Hattori & Fujita (1984) Biochem. J. 218, 69-74].


1979 ◽  
Vol 182 (3) ◽  
pp. 821-825 ◽  
Author(s):  
A Erman ◽  
A Raz

The bivalent cations Ca2+, Mg2+, Co2+, Mn2+, Sr2+ and Ba2+ were compared for their stimulatory or inhibitory effect on prostaglandin formation in rabbit kidney medulla slices. Ca2+, Mn2+ and Sr2+ ions stimulated prostaglandin generation up to 3–5-fold in a time- and dose-dependent manner (Ca2+ greater than Mn2+ congruent to Sr2+). The stimulation by Mn2+ (but not by Sr2+) was also observed in incubations of medulla slices in the presence of Ca2+. Mg2+ and Co2+ ions were without significant effects on either basal or Ca2+-stimulated prostaglandin synthesis. The stimulatory effects of Ca2+, Mn2+ and Sr2+ on medullary generation of prostaglandin E2 were found to correlate with their stimulatory effects on the release of arachidonic acid and linoleic acid from tissue lipids. The release of other fatty acids was unaffected, except for a small increase in oleic acid release. As both arachidonic acid and linoleic acid are predominantly found in the 2-position of the glycerol moiety of phospholipids, the stimulation by these cations of prostaglandin E2 formation appears to be mediated via stimulation of phospholipase A2 activity.


1994 ◽  
Vol 131 (5) ◽  
pp. 510-515 ◽  
Author(s):  
Osamu Kozawa ◽  
Haruhiko Tokuda ◽  
Atsushi Suzuki ◽  
Jun Kotoyori ◽  
Yoshiaki Ito ◽  
...  

Kozawa O, Tokuda H, Suzuki A, Kotoyori J, Ito Y, Oiso Y. Effect of glucocorticoid on prostaglandin F2α-induced prostaglandin E2 synthesis in osteoblast-like cells: inhibition of phosphoinositide hydrolysis by phospholipase C as well as phospholipase A2. Eur J Endocrinol 1994;131:510–15. ISSN 0804–4643 It is well known that osteoporosis is a common complication of patients with glucocorticoid excess. We showed previously that prostaglandin (PG) F2α stimulates the synthesis of PGE2, a potent bone resorbing agent, and that the activation of protein kinase C amplifies the PGF2α-induced PGE2 synthesis through the potentiation of phospholipase A2 activity in osteoblast-like MC3T3-E1 cells. In the present study, we examined the effect of dexamethasone on PGE2 synthesis induced by PGF2α in MC3T3-E1 cells. The pretreatment with dexamethasone significantly inhibited the PGE2 synthesis in a dose-dependent manner in the range between 0.1 and 10 nmol/l in these cells. This effect of dexamethasone was dependent on the time of pretreatment up to 8 h. Dexamethasone also inhibited PGE2 synthesis induced by melittin, known as a phospholipase A2 activator. Furthermore, dexamethasone significantly inhibited the enhancement of PGF2α- or melittin-induced PGE2 synthesis by 12-O-tetradecanoylphorbol-13-acetate, known as a protein kinase C activator. In addition, dexamethasone significantly inhibited PGF2α-induced formation of inositol phosphates in a dose-dependent manner between 0.1 and 10 nmol/l in MC3T3-E1 cells. These results strongly suggest that glucocorticoid inhibits PGF2α-induced PGE2 synthesis through the inhibition of phosphoinositide hydrolysis by phospholipase C as well as phospholipase A2 in osteoblast-like cells. Osamu Kozawa, Department of Biochemistry, Institute for Developmental Research, Aichi Prefectural Colony, Kasugai, Aichi 480-03, Japan


1982 ◽  
Vol 242 (4) ◽  
pp. H629-H632
Author(s):  
W. I. Rosenblum

Cerebral surface arterioles of the mouse were constricted in a dose-dependent manner by three different unsaturated fatty acids each with one of its double bonds in the n-6 position: arachidonate, linoleic, and 11,14,17-eicosatrienoic acid (ETA) in doses of 10-200 micrograms/ml. The constriction was transient, and its magnitude was significantly reduced by pretreatment of the mice with intraperitoneal injections of indomethacin (5 mg/kg), aspirin (100 mg/kg), or sodium 2-amino-3-(4 chlorobenzyl)-phenylacetate (AHR-6293, 100 mg/kg). The inhibitory effect of these cyclooxygenase inhibitors suggests that this enzyme is involved in the response to these fatty acids and is in keeping with suggestions in the literature stating that such unsaturated fatty acids may interact with cyclooxygenase even when they cannot form prostaglandin (PG) endoperoxides, The PG endoperoxide formed by arachidonate or the analogous hydroperoxy compounds formed by linoleic or 11,14,17 ETA, may then alter cerebrovascular tone by production of reactive, O2-containing species. Alternate explanations for the data are also proposed.


1981 ◽  
Vol 194 (3) ◽  
pp. 957-961 ◽  
Author(s):  
A Erman ◽  
A Raz

Three separate prostaglandin-generating activities are associated with plasma membranes, mitochondria and microsomal fractions from rabbit kidney medulla. In the plasma membranes and mitochondria, but not in microsomal fractions, Ca2+ ions stimulate the activity of phospholipase A2, yielding selective release of arachidonic acid and linoleic acid and concomitant increase in prostaglandin E2 formation.


1990 ◽  
Vol 268 (1) ◽  
pp. 91-98 ◽  
Author(s):  
M D C Garcia ◽  
S Fernandez-Gallardo ◽  
M A Gijon ◽  
C Garcia ◽  
M L Nieto ◽  
...  

Theophylline and 1-methyl-3-isobutylxanthine (MIX), compounds that block eicosanoid formation and modulate phospholipase A2 activity, inhibited in a dose-dependent manner the formation of both leukotriene B4 (LTB4) and platelet-activating factor (PAF) by human polymorphonuclear leucocytes (PMN) in response to ionophore A23187. Theophylline and MIX lacked any inhibitory effect on acetyl-CoA: lyso-PAF acetyltransferase activity, which is the rate-limiting step for PAF biosynthesis in PMN. The effect of theophylline and MIX on PAF formation could be reversed by incubating the cells in the presence of 1-10 microM exogenous lyso-PAF. Incubation of PMN homogenates in the presence of unsaturated non-esterified fatty acids resulted in dose-dependent inhibition of the acetyltransferase. This effect was linked to the presence of a free carboxyl group, since both arachidonic acid methyl ester and palmitoyl-arachidonoyl phosphatidylcholine lacked inhibitory activity. This inhibitory effect was also dependent on the number of double bonds, since arachidonic acid (C20:4) and eicosapentaenoic acid (C20:5) displayed maximal effect. Kinetic analysis showed that the effect of arachidonic acid was consistent with competitive inhibition, with a Ki value of about 19 microM. Oxidative metabolites of arachidonic acid showed a lesser inhibitory effect with the following order of potency: arachidonic acid greater than 15-HETE (15-hydroxy-6,8,11,14-eicosatetraenoic acid) greater than LTB4 greater than 5-HETE (5-hydroxy-6,8,11,14-eicosatetraenoic acid) greater than lipoxin A4. Examination of enzymes involved in CoA-dependent acylation revealed a low activity of both arachidonoyl-CoA synthetase and arachidonoyl-CoA: lyso-PAF arachidonoyltransferase. These data indicate a strong influence on PAF biosynthesis of the products of the phospholipase A2 reaction, with lyso-PAF disposal being a critical event for PAF formation, and unsaturated fatty acids acting as feed-back inhibitors. The conversion of arachidonic acid via oxidative metabolism into less active inhibitors of acetyl-CoA:lyso-PAF acetyltransferase seems to be an additional mechanism of modulation of this enzyme activity, linked to the function of lipoxygenases. Finally, the enzyme activities involved in arachidonoyl-CoA-dependent acylation of lyso-PAF show a low efficiency in capturing arachidonic acid.


2019 ◽  
Vol 27 (4) ◽  
pp. 237
Author(s):  
T.A. Ramadan ◽  
A.M. Rashad

The purpose of this study was to investigate the effects of two sublethal doses of gossypol (GOS) (4 and 20 mg/kg of body weight), administered every other day, on some haematological, biochemical, enzymatic and electrolytic properties and amino and fatty acids in male rabbit blood plasma. The experiment lasted for 16 wk and included two phases: 1) administration period; rabbits were given the experimental doses of GOS for 8 wk; and 2) recovery period; rabbits were allowed 8 wk for complete withdrawal of drugs from the plasma. Results showed that low levels of gossypol increased (<em>P</em>&lt;0.01) haemoglobin, mean corpuscular haemoglobin and white blood cells compared to control. Plasma total protein was increased (<em>P</em>&lt;0.01) by the low GOS dose in both experimental phases. Likewise, glucose concentration was increased (<em>P</em>&lt;0.01) by the high GOS dose during the recovery period. Aspartate aminotransferase and alanine aminotransferase enzymes were increased (<em>P</em>&lt;0.01) by the high dose of GOS treatment only. Low GOS dose increased (<em>P</em>&lt;0.01) blood plasma Na+ concentration in the recovery period only. Results revealed that total essential amino acids (EAA), and EAA/non-EAA ratio were not affected in a dose-dependent manner during the treatment phase expect for plasma proline, which was increased along with non-EAA (<em>P</em>&lt;0.01) by high GOS dose. Additionally, GOS administration did not affect total unsaturated fatty acids (USFA), total saturated fatty acids (SFA) and SFA/USFA ratio in a dose-dependent manner. In conclusion, Gossypol treatment affected rabbit haematological parameters and biochemical properties of blood plasma in a dose-dependent manner.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Bo Gao ◽  
Qiang Huang ◽  
Qiang Jie ◽  
Wei-Guang Lu ◽  
Long Wang ◽  
...  

Abstract Free fatty acids display diverse effects as signalling molecules through GPCRs in addition to their involvement in cellular metabolism. GPR120, a G protein-coupled receptor for long-chain unsaturated fatty acids, has been reported to mediate adipogenesis in lipid metabolism. However, whether GPR120 also mediates osteogenesis and regulates BMMSCs remain unclear. In this study, we showed that GPR120 targeted the bi-potential differentiation of BMMSCs in a ligand dose-dependent manner. High concentrations of TUG-891 (a highly selective agonist of GPR120) promoted osteogenesis via the Ras-ERK1/2 cascade, while low concentrations elevated P38 and increased adipogenesis. The fine molecular regulation of GPR120 was implemented by up-regulating different integrin subunits (α1, α2 and β1; α5 and β3). The administration of high doses of TUG-891 rescued oestrogen-deficient bone loss in vivo, further supporting an essential role of GPR120 in bone metabolism. Our findings, for the first time, showed that GPR120-mediated cellular signalling determines the bi-potential differentiation of BMMSCs in a dose-dependent manner. Additionally, the induction of different integrin subunits was involved in the cytoplasmic regulation of a seesaw-like balance between ERK and p38 phosphorylation. These findings provide new hope for developing novel remedies to treat osteoporosis by adjusting the GPR120-mediated differentiation balance of BMMSCs.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Hojun Lee ◽  
Jae-Young Lim ◽  
Seung-Jun Choi

Accumulation of saturated fatty acids contributes to lipotoxicity-related insulin resistance and atrophy in skeletal muscle. Conversely, unsaturated fatty acids like docosahexaenoic acid were proven to preserve muscle mass. However, it is not known if the most common unsaturated oleate will protect skeletal myotubes against palmitate-mediated atrophy, and its specific mechanism remains to be elucidated. Therefore, we investigated the effects of oleate on atrophy-related factors in palmitate-conditioned myotubes. Exposure of myotubes to palmitate, but not to oleate, led to an induction of fragmented nuclei, myotube loss, atrophy, and mitochondrial superoxide in a dose-dependent manner. Treatment of oleate to myotubes attenuated production of palmitate-induced mitochondrial superoxide in a dose-dependent manner. The treatment of oleate or MitoTEMPO to palmitate-conditioned myotubes led to inhibition of palmitate-induced mRNA expression of proinflammatory (TNF-αand IL6), mitochondrial fission (Drp1 and Fis1), and atrophy markers (myostatin and atrogin1). In accordance with the gene expression data, our immunocytochemistry experiment demonstrated that oleate and MitoTEMPO prevented or attenuated palmitate-mediated myotube shrinkage. These results provide a mechanism indicating that oleate prevents palmitate-mediated atrophy via at least partial modulation of mitochondrial superoxide production.


1984 ◽  
Vol 36 ◽  
pp. 95
Author(s):  
Tadashi Fujita ◽  
Yohko Fujimoto ◽  
Eiko Toibana ◽  
Hidetoshi Tanioka ◽  
Taku Yamamoto

Sign in / Sign up

Export Citation Format

Share Document