eicosatetraenoic acid
Recently Published Documents


TOTAL DOCUMENTS

346
(FIVE YEARS 28)

H-INDEX

49
(FIVE YEARS 3)

2021 ◽  
Vol 22 (17) ◽  
pp. 9295
Author(s):  
Shinya Takenouchi ◽  
Daiki Imai ◽  
Tatsuro Nakamura ◽  
Takahisa Murata

5,6-dihydroxy-8Z,11Z,14Z,17Z-eicosatetraenoic acid (5,6-DiHETE) is an eicosapentaenoic acid-derived newly discovered bioactive anti-inflammatory lipid mediator having diverse functions. Here, we assessed the potential of orally administered 5,6-DiHETE in promoting healing of dextran sulfate sodium (DSS)-induced colitis in mice. We measured the plasma concentrations of 5,6-DiHETE in untreated mice before and 0.5, 1, 3, and 6 h after its oral administration (150 or 600 μg/kg) in mice. Mice developed colitis by DSS (2% in drinking water for 4 days), and 5,6-DiHETE (150 or 600 μg/kg/day) was orally administered from day 9 to 14. Next, the faecal hardness and bleeding were assessed, and the dissected colons on day 14 via H&E staining. The plasma concentration of 5,6-DiHETE reached 25.05 or 44.79 ng/mL 0.5 h after the administration of 150 or 600 μg/kg, respectively, followed by a gradual decrease. The half-life of 5,6-DiHETE was estimated to be 1.25–1.63 h. Diarrhoea deteriorated after day 3 and peaked on day 5, followed by a gradual recovery. Histological assessment on day 14 showed DSS-mediated granulocyte infiltration, mucosal erosion, submucosal edema, and cryptal abscesses in mice. Oral administration of 150 or 600 μg/kg/day of 5,6-DiHETE accelerated the recovery from the DSS-induced diarrhoea and significantly ameliorated colon inflammation. The therapeutic effect of 600 μg/kg/day 5,6-DiHETE was slightly stronger than that by 150 μg/kg/day. Our study reveals attenuation of DSS-induced colitis in mice by the oral administration of 5,6-DiHETE dose-dependently, thereby suggesting a therapeutic potential of 5,6-DiHETE for inflammatory bowel disease.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chun-Jui Su ◽  
Wen-Ting Ju ◽  
Yi-Min Chen ◽  
Michael W.L. Chiang ◽  
Sung-Yuan Hsieh ◽  
...  

Abstract Marine oomycetous species produce, among other fatty acids, omega-6 arachidonic acid (ARA) and omega-3 eicosapentaenoic acid (EPA), with implications for the industrial potential of this group of organisms and the need to find an isolate with high production. This study screened 14 isolates of marine oomycetous species: Halophytophthora avicenniae, H. batemanensis, H. exoprolifera, H. polymorphica and Salispina spinosa cultured from fallen mangrove leaves in Taiwan for 24 saturated and unsaturated fatty acids in their mycelia. This paper is the first to report C18:1n-7 vaccenic acid, C20:1 eicosenoic acid, C24:1 nervonic acid, C20:2n-6 eicosadienoic acid, C22:4n-6 adrenic acid, C20:4n-3 eicosatetraenoic acid and C22:5n-3 docosapentaenoic acid in mycelia of Halophytophthora and Salispina species, and the fatty acid profiles of H. batemanensis and H. exoprolifera. Five fatty acids were dominant in the mycelia of the isolates, i.e. C16:0 palmitic acid, C18:1n-9 oleic acid, C18:2n-6 linoleic acid, C20:4n-6 arachidonic acid and C20:5n-3 eicosapentaenoic acid. For the essential fatty acids, S. spinosa produced the highest level of arachidonic acid (27–31% of total fatty acid (TFA), 141–188 mg l−1 yield) while H. avicenniae IMB212 produced the highest percentage of EPA (15% of TFA) while H. polymorphica IMB227 produced the highest yield (96 mg l−1). Different species and isolates of the same species produced different fatty acid profiles, and further research effort may yield a high production isolate of industrial significance and also important fatty acids from the marine environment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bara A. Shraim ◽  
Moaz O. Moursi ◽  
Ibrahim F. Benter ◽  
Abdella M. Habib ◽  
Saghir Akhtar

Diabetes mellitus is a major debilitating disease whose global incidence is progressively increasing with currently over 463 million adult sufferers and this figure will likely reach over 700 million by the year 2045. It is the complications of diabetes such as cardiovascular, renal, neuronal and ocular dysfunction that lead to increased patient morbidity and mortality. Of these, cardiovascular complications that can result in stroke and cardiomyopathies are 2- to 5-fold more likely in diabetes but the underlying mechanisms involved in their development are not fully understood. Emerging research suggests that members of the Epidermal Growth Factor Receptor (EGFR/ErbB/HER) family of tyrosine kinases can have a dual role in that they are beneficially required for normal development and physiological functioning of the cardiovascular system (CVS) as well as in salvage pathways following acute cardiac ischemia/reperfusion injury but their chronic dysregulation may also be intricately involved in mediating diabetes-induced cardiovascular pathologies. Here we review the evidence for EGFR/ErbB/HER receptors in mediating these dual roles in the CVS and also discuss their potential interplay with the Renin-Angiotensin-Aldosterone System heptapeptide, Angiotensin-(1-7), as well the arachidonic acid metabolite, 20-HETE (20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid). A greater understanding of the multi-faceted roles of EGFR/ErbB/HER family of tyrosine kinases and their interplay with other key modulators of cardiovascular function could facilitate the development of novel therapeutic strategies for treating diabetes-induced cardiovascular complications.


2021 ◽  
Vol 135 (16) ◽  
pp. 1945-1980
Author(s):  
William S. Powell

Abstract Eicosanoids comprise a group of oxidation products of arachidonic and 5,8,11,14,17-eicosapentaenoic acids formed by oxygenases and downstream enzymes. The two major pathways for eicosanoid formation are initiated by the actions of 5-lipoxygenase (5-LO), leading to leukotrienes (LTs) and 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), and cyclooxygenase (COX), leading to prostaglandins (PGs) and thromboxane (TX). A third group (specialized pro-resolving mediators; SPMs), including lipoxin A4 (LXA4) and resolvins (Rvs), are formed by the combined actions of different oxygenases. The actions of the above eicosanoids are mediated by approximately 20 G protein-coupled receptors, resulting in a variety of both detrimental and beneficial effects on airway smooth muscle and inflammatory cells that are strongly implicated in asthma pathophysiology. Drugs targeting proinflammatory eicosanoid receptors, including CysLT1, the receptor for LTD4 (montelukast) and TP, the receptor for TXA2 (seratrodast) are currently in use, whereas antagonists of a number of other receptors, including DP2 (PGD2), BLT1 (LTB4), and OXE (5-oxo-ETE) are under investigation. Agonists targeting anti-inflammatory/pro-resolving eicosanoid receptors such as EP2/4 (PGE2), IP (PGI2), ALX/FPR2 (LXA4), and Chemerin1 (RvE1/2) are also being examined. This review summarizes the contributions of eicosanoid receptors to the pathophysiology of asthma and the potential therapeutic benefits of drugs that target these receptors. Because of the multifactorial nature of asthma and the diverse pathways affected by eicosanoid receptors, it will be important to identify subgroups of asthmatics that are likely to respond to any given therapy.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Roxana Coras ◽  
Arthur Kavanaugh ◽  
Angela Kluzniak ◽  
Dustina Holt ◽  
Amy Weilgosz ◽  
...  

Abstract Background Oxylipins are biological lipids that have been implicated in inflammation. We previously found that certain oxylipins correlated with clinical manifestations in psoriatic arthritis (PsA) patients. Here, we compare oxylipin profiles in PsA patients and those with psoriasis (PsO) without inflammatory arthritis to identify oxylipins that associate with specific disease manifestations to better understand disease pathogenesis and identify new biomarkers. Methods Consecutive patients with PsA (who met the CASPAR classification criteria for PsA) and PsO were recruited from the Rheumatology Outpatient Clinic. A thorough clinical examination was performed, including entheseal (Leeds enthesitis index (LEI)) and joint involvement (SJC/TJC 66/68). Patients were evaluated for pain and global disease activity on a visual analog scale (VAS) ranging from 0 to 100. This was followed by disease activity scores calculation: cDAPSA (Disease Activity Index for Psoriatic Arthritis) and Psoriasis Area and Severity Index (PASI). Serum oxylipins were determined by mass spectrometry and their association with clinical characteristics (PASI/LEI and cDAPSA) was analyzed using Metaboanalyst 4.0 and R version 3.6.1. Results Twenty PsO (average age 52 [10.8], 55% males) and 19 PsA patients (average age 60.5 [11.4], 63.1% males) were included. PsO patients had an average body mass index (BMI) of 33.7 (6.84) and an average PASI of 3.8 (4.2). PsA patients had an average BMI of 31.9 (5.6), TJC of 9.3 (10.41), SJC of 3.7 (4.23), with an average cDAPSA of 23.3 (11.4). 63.1% of PsA patients had enthesitis (average LEI 2.2 [3]) and the same percentage had psoriasis (average PASI 3(5]). Sera were analyzed for oxylipin levels. PsO and PsA patients with higher PASI score (> 2.5) had significantly lower serum concentrations of pro-inflammatory oxylipins, most of them arachidonic acid derived (AA). Oxylipin profiling did not associate with cDAPSA. Interestingly, several AA-derived oxylipins (5,15 di-HETE (5S,15S-dihydroxy-6E,8Z,10Z,13E-eicosatetraenoic acid), 5-oxoETE (5-Oxo-eicosatetraenoic acid), PGE2 (prostaglandin E2), 11bPGE2 (11 beta prostaglandin D2), and LTB4 (leukotriene B4)) were significantly increased in PsA patients with enthesitis compared to those without. Conclusions The AA-derived proinflammatory oxylipins were lower in both PsO and PsA patients with higher skin scores. Joint disease activity was not associated with the concentrations of oxylipins. Yet, enthesitis was associated with an increase of AA-derived pro-inflammatory oxylipins in PsA patients. Further studies are needed to determine whether oxylipin profiling can be a good biomarker of enthesitis in PsA patients.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Thomas Kiran Marella ◽  
Raya Bhattacharjya ◽  
Archana Tiwari

AbstractDiatoms are unicellular photosynthetic protists which constitute one of the most successful microalgae contributing enormously to global primary productivity and nutrient cycles in marine and freshwater habitats. Though they possess the ability to biosynthesize high value compounds like eicosatetraenoic acid (EPA), fucoxanthin (Fx) and chrysolaminarin (Chrl) the major bottle neck in commercialization is their inability to attain high density growth. However, their unique potential of acquiring diverse carbon sources via varied mechanisms enables them to adapt and grow under phototrophic, mixotrophic as well as heterotrophic modes. Growth on organic carbon substrates promotes higher biomass, lipid, and carbohydrate productivity, which further triggers the yield of various biomolecules. Since, the current mass culture practices primarily employ open pond and tubular photobioreactors for phototrophic growth, they become cost intensive and economically non-viable. Therefore, in this review we attempt to explore and compare the mechanisms involved in organic carbon acquisition in diatoms and its implications on mixotrophic and heterotrophic growth and biomolecule production and validate how these strategies could pave a way for future exploration and establishment of sustainable diatom biorefineries for novel biomolecules.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ziye Zhu ◽  
Wenjun Zhou ◽  
Yang Yang ◽  
Kai Wang ◽  
Fenghua Li ◽  
...  

Alcoholic liver disease (ALD) is a liver disease caused by long-term alcohol consumption. ROS-mediated oxidative stress is the leading cause of ALD. Pien-Tze-Huang (PZH), a traditional formula, is famous in China. This study was designed to evaluate the effects and explore the potential mechanisms of PZH in ALD. Forty mice were randomly divided into five groups: control group (normal diet + vehicle), model group (ethanol diet + vehicle), PZH-L group (ethanol diet + PZH (0.125 g/kg)), PZH-M group (ethanol diet + PZH (0.25 g/kg)), and PZH-H group (ethanol diet + PZH (0.5 g/kg)). The mice were sacrificed, and their liver and blood samples were preserved. Liver steatosis, triglyceride (TG), total cholesterol, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels were assayed. Malondialdehyde (MDA), glutathione peroxidase (GSH-PX), and total superoxide dismutase were identified using commercial kits. Oxylipins were profiled, and the data were analyzed. The AMPK/ACC/CPT1A pathway was identified using real-time polymerase chain reaction and western blotting. The PZH-H intervention significantly alleviated hepatic steatosis and injury and reduced the levels of liver TG and serum ALT and AST. In addition, MDA levels were markedly reduced, and GSH-PX activity significantly increased after PZH-H intervention. Finally, PZH-H increased the levels of 17-HETE, 15-HEPE, 9-HOTrE, 13-HOTrE, and 5,6-dihydroxy-8Z,11Z,14Z,17Z-eicosatetraenoic acid, and reduced PGE2 levels. PZH-H intervention also promoted the phosphorylation of AMPK and ACC, and the expression of CPT1A. In conclusion, PZH reduced oxidative stress and alleviated hepatic steatosis and injury. The mechanism was correlated with the oxylipin metabolites/AMPK/ACC/CPT1A axis.


Author(s):  
Hans Jagusch ◽  
Markus Werner ◽  
Duco Koenis ◽  
Jesmond Dalli ◽  
Oliver Werz ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
pp. 1-6
Author(s):  
Abyadul Fitriyah ◽  
Isyaturriyadhah Isyaturriyadhah

This research aims to know the effects of using Omega 3, Omega 6 Fatty Acid and Cholesterol synthetic on Hormone Testosterone Level, voice frequency, and male quails reproduction organ. The research used 175 male quails which were divided in to 7 treatment groups; R0 (control), R1 (0,163 mg eicosapentaenoic acid), R2 (0,326 mg eicosapentaenoic acid), R3 (0,163 mg 5,8,11,14 eicosatetraenoic acid), R4 (0,326 mg 5,8,11,14 eicosatetraenoic acid), R5 (20 mg cholesterol NF), R6 (40 mg cholesterol NF). Cholesterol and fatty acid treatment were given orally for five days in succession for each treatment group. Data were analyzed with one-way analyze, and then continued with orthogonal contrast test and morphometric test. The research output, omega 3, omega 6 fatty acid with double dose (0,326 mg), showed the best response: the increase of the testis weight, height, diameter, and volume. The highest hormone testosterone level was showed by R2 treatment. The conclusion is that using 0,326 mg omega 3 and omega 6 fatty acid affected the reproduction organ's improvement and male quail's blood plasma and hormone testosterone level


Sign in / Sign up

Export Citation Format

Share Document