scholarly journals Natural structural variation in enzymes as a tool in the study of mechanism exemplified by a comparison of the catalytic-site structure and characteristics of cathepsin B and papain. pH-dependent kinetics of the reactions of cathepsin B from bovine spleen and from rat liver with a thiol-specific two-protonic-state probe (2,2′-dipyridyl disulphide) and with a specific synthetic substrate (N-α-benzyloxycarbonyl-l-arginyl-l-arginine 2-naphthylamide)

1984 ◽  
Vol 222 (3) ◽  
pp. 805-814 ◽  
Author(s):  
F Willenbrock ◽  
K Brocklehurst

Cathepsin B (EC 3.4.22.1) from bovine spleen and the analogous enzyme from rat liver were investigated at 25 degrees C at I0.1 in acidic media by kinetic study of (a) the reactions of their catalytic-site thiol groups towards the two-protonic-state reactivity probe 2,2′-dipyridyl disulphide and (b) their catalysis of the hydrolysis of N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide. Reactivity-probe kinetics showed that nucleophilic character is generated in the sulphur atom of cathepsin B by protonic dissociation with pKa 3.4, presumably to form an S-/ImH+ ion-pair. Substrate-catalysis kinetics showed that ion-pair formation is not sufficient to generate catalytic competence in cathepsin B, because catalytic activity is not generated as the pH is raised across pKa 3.4 but rather as it is raised across pKa 5-6 (5.1 for kcat; 5.6 for kcat./Km for the bovine spleen enzyme and 5.8 for kcat./Km for the rat liver enzyme). The implications of these results and of known structural differences between the catalytic sites of the rat liver enzyme and papain (EC 3.4.22.2) for the mechanism of cysteine-proteinase-catalysed hydrolysis are discussed.

1986 ◽  
Vol 238 (1) ◽  
pp. 103-107 ◽  
Author(s):  
F Willenbrock ◽  
K Brocklehurst

Benzofuroxan reacts with the catalytic-site thiol group of cathepsin B (EC 3.4.22.1) to produce stoichiometric amount of the chromophoric reduction product, o-benzoquinone dioxime. In a study of the pH-dependence of the kinetics of this reaction, most data were collected for the bovine spleen enzyme, but the more limited data collected for the rat liver enzyme were closely similar both in the magnitude of the values of the second-order rate constants (k) and in the shape of the pH-k profile. In acidic and weakly alkaline media, the reaction is faster than the reactions of benzofuroxan with some other cysteine proteinases. For example, in the pH region around 5-6, the reaction of cathepsin B is about 10 times faster than that of papain, 15 times faster than that of stem bromelain and 6 times faster than that of ficin. The pH-dependence of k for the reaction of cathepsin B with benzofuroxan was determined in the pH range 2.7-8.3. In marked contrast with the analogous reactions of papain, ficin and stem bromelain [reported by Shipton & Brocklehurst (1977) Biochem. J. 167, 799-810], the pH-k profile for the cathepsin B reaction contains a sigmoidal component with pKa 5.2 in which k increases with decrease in pH. This modulation of the reactivity of the catalytic-site -S-/-ImH+ ion-pair state of cathepsin B (produced by protonic dissociation from -SH/-ImH+ with pKa approx. 3) towards a small, rigid, electrophilic reagent, in a reaction that appears to involve both components of the ion-pair for efficient reaction, suggests that the state of ionization of a group associated with a molecular pKa of approx. 5 may control ion-pair geometry. This might account for the remarkable finding [reported by Willenbrock & Brocklehurst (1984) Biochem. J. 222, 805-814] that, although the ion-pair appears to be generated in cathepsin B as the pH is increased across pKa 3.4, catalytic competence is not generated until the pH is increased across pKa 5-6.


1994 ◽  
Vol 300 (3) ◽  
pp. 805-820 ◽  
Author(s):  
M P Thomas ◽  
C M Topham ◽  
D Kowlessur ◽  
G W Mellor ◽  
E W Thomas ◽  
...  

Chymopapain M, the monothiol cysteine proteinase component of the chymopapain band eluted after chymopapains A and B in cation-exchange chromatography, was isolated from the dried latex of Carica papaya and characterized by kinetic and chromatographic analysis. This late-eluted chymopapain is probably a component of the cysteine proteinase fraction of papaya latex discovered by Schack [(1967) Compt. Rend. Trav. Lab. Carlsberg 36, 67-83], named papaya peptidase B by Lynn [(1979) Biochim. Biophys. Acta 569, 193-201] and partially characterized by Polgár [(1981) Biochim. Biophys. Acta 658, 262-269] and is the enzyme with unusual specificity characteristics (papaya proteinase IV) that Buttle, Kembhavi, Sharp, Shute, Rich and Barrett [Biochem. J. (1989) 261, 469-476] claimed to be a previously undetected cysteine proteinase eluted from a cation-exchange column near to the early-eluted chymopapains. A study of the time-dependent chromatographic consequences of thiol-dependent proteolysis of the components of papaya latex is reported. Chymopapain M was isolated by (i) affinity chromatography followed by separation from papain using cation-exchange f.p.l.c. on a Mono S HR5/5 column and (ii) cation-exchange chromatography followed by an unusual variant of covalent chromatography by thiol-disulphide interchange. The existence in chymopapain M of a nucleophilic interactive Cys/His catalytic-site system analogous to those in papain (EC 3.4.22.2) and other cysteine proteinases was deduced from the characteristics shape of the pH-second-order rate constant (k) profiles for its reactions with 2,2′-dipyridyl disulphide and ethyl 2-pyridyl disulphide. Analysis of the pH-k data for the reactions of chymopapain M with the 2-pyridyl disulphides and with 4,4′-dipyridyl disulphide permits the assignment of molecular pKa values of 3.4 and 8.7 to the formation and subsequent dehydronation of the Cys-S-/His-Im+H state of the catalytic site and reveals three other kinetically influential ionizations with pKa values 3.4, 4.3 and 5.6. The pH-dependences of kcat./Km for the hydrolysis of N-acetyl-L-Phe-Gly-4-nitroanilide at 25.0 degrees C and I0.1 M catalysed by chymopapain M and papain were determined. For both enzymes, little catalytic activity (5-7% of the maximal) develops consequent on formation of the catalytic site Cys-S-/His-Im+H ion-pair state (across pKa 3.4 for both enzymes). For papain, full expression of Kcat./Km for the uncharged substrate requires only the additional hydronic dissociation with pKa 4.2. By contrast, full expression of kcat./Km for chymopapain M requires additional hydronic dissociation with pKa values of 4.3 and 5.6.(ABSTRACT TRUNCATED AT 400 WORDS)


2004 ◽  
Vol 14 (2) ◽  
pp. 117-124 ◽  
Author(s):  
T. Considine ◽  
Á. Healy ◽  
A.L. Kelly ◽  
P.L.H. McSweeney

1987 ◽  
Vol 247 (1) ◽  
pp. 181-193 ◽  
Author(s):  
E Salih ◽  
J P G Malthouse ◽  
D Kowlessur ◽  
M Jarvis ◽  
M O'Driscoll ◽  
...  

The characteristics of actinidin (EC 3.4.22.14) and papain (EC 3.4.22.2), two cysteine proteinases whose catalytic-site regions appear to superimpose to a degree that approaches atomic co-ordinate accuracy of both crystal structures, were evaluated by determining (a) the pH-dependence in acid media of the acylation process of the catalytic act (k+2/Ks) using N alpha-benzoyl-L-arginine p-nitroanilide (L-Bz-Arg-Nan) as substrate and (b) the sensitivity of the reactivity of the catalytic-site thiol group and its pH-dependence to structural change in small, thiol-specific, two-protonic-state reactivity probes (2,2′-dipyridyl disulphide and methyl 2-pyridyl disulphide) where enzyme-probe contacts should be restricted to areas close to the catalytic site. Distortion of the catalytic sites of the two enzymes at pH less than 4 was evaluated over time-scales appropriate for both stopped-flow reactivity probe kinetics (less than or equal to 1-2 s) and steady-state substrate catalysis kinetics (3-5 min) by using the 2,2′-dipyridyl disulphide monocation as a titrant for non-distorted catalytic sites. This permitted a lower pH limit to be defined for valid kinetic analysis of both types. The behaviour of the enzymes at pH less than 4 requires a kinetic model in which the apparently biomolecular reaction of enzyme with probe reagent is separated from the process leading to loss of conformational integrity by a potentially reversible step. The acylation of actinidin with L-Bz-Arg-Nan in acidic media occurs in two protonic states, one produced by raising the pH across pKa less than 4 which probably characterizes the formation of -S-/-ImH+ ion pair (pKa approx. 3) and the other, of higher reactivity, produced by raising the pH across pKa 5.5, which may characterize rearrangement of catalytic-site geometry. The pH-dependence of the acylation of papain by L-Bz-Arg-Nan is quite different and is not influenced by protonic dissociation with pKa values in the range 5-6. The earlier conclusion that the acylation of papain depends on two protonic dissociations each with pKa approx. 4 was confirmed. This argument is now more firmly based because titration with 2,2′-dipyridyl disulphide permits the loss of conformational integrity to be taken into account in the analysis of the kinetic data at very low pH. Methyl 2-pyridyl disulphide was synthesized by reaction of pyridine-2-thione with methyl methanethiolsulphonate and its pKa at I = 0.1 was determined by spectral analysis at 307 nm to be 2.8.(ABSTRACT TRUNCATED AT 400 WORDS)


1978 ◽  
Vol 30 (1) ◽  
pp. 117-128
Author(s):  
S. Hodson

Fractions rich in Golgi apparatus were isolated from female rat liver and incubated with different concentrations of MgATP and calcium. Calcium was sequestered by the fraction in the presence but not in the absence of ATP. The kinetics of the uptake process showed an exponential type accumulation to a maximum value which could be explained by a ‘pumpleak’ mechanism where Vmax was estimated at 6.7 nmol calcium/mg protein/min. Apparent Km for ATP was 1 mM and for calcium was 85 micron. The uptake is not inhibited in 5 mM azide, nor is it enhanced in 5 mM oxalate, suggesting that the sequestration is not caused by contamination from mitochondria or microsomes. Parallel experiments on a fraction rich in plasma membrane show at least a 10-fold reduction of activity over the Golgi apparatus-rich fraction, which is interpreted as evidence that plasma membrane contamination in the Golgi apparatus-rich fraction is not primarily responsible for the calcium sequestration activity. Morphometric analysis showed that about 85% of the recognizable membrane profiles in the fraction was associated with elements of the Golgi apparatus. Further evidence is given which suggests that at least 90% of the fraction was uniform in its ability to sequester calcium. In preliminary experiments it was not found possible to separate galactosyltransferase activity (a secific enzyme associated with the Golgi apparatus) from the calcium-sequestration mechanism. The stoichiometry of the hydrolysis of ATP associated with the uptake of calcium is the same as that shown by other isolated membrane systems.


1983 ◽  
Vol 209 (3) ◽  
pp. 873-879 ◽  
Author(s):  
K Brocklehurst ◽  
S M Mushiri ◽  
G Patel ◽  
F Willenbrock

1. The kinetics of the reactions of the catalytic-site thiol groups of actinidin (the cysteine proteinase from Actinidia chinensis), ficin (EC 3.4.22.3), papain (EC 3.4.22.2) and papaya peptidase A (the other monothiol cysteine proteinase component of Carica papaya) with 4,4′-dipyridyl disulphide (4-Py-S-S-4-Py) and with 5,5′-dithiobis-(2-nitrobenzoate) dianion (Nbs22-) were studied in the pH range approx. 6-10. These studies provided the pH-independent second-order rate constants (k) for the reactions of the two probe reagents with the catalytic-site thiolate anions each in the environment of a neutral histidine side chain where an active-centre carboxy group would be ionized. 2. The ratio R equal to kNbs22-/k4-Py-S-S-4-Py provides an index of the catalytic-site solvation properties of the four cysteine proteinases and varies markedly from one enzyme to another, being 0.80 for papaya peptidase A (0.86 for the model thiol, 2-mercaptoethanol), 29 for actinidin, 0.18 for ficin and 0.015 for papain. These differences appear to derive mainly from the response of the enzyme to the negative charge on Nbs22-. 3. Possible implications of these results for (a) mechanisms of cysteine proteinase catalysis and (b) the possibility of using series of functionally related enzymes in the study of mechanism are discussed.


2003 ◽  
Vol 372 (3) ◽  
pp. 735-746 ◽  
Author(s):  
Syeed HUSSAIN ◽  
Surapong PINITGLANG ◽  
Tamara S. F. BAILEY ◽  
James D. REID ◽  
Michael A. NOBLE ◽  
...  

The acylation and deacylation stages of the hydrolysis of N-acetyl-Phe-Gly methyl thionoester catalysed by papain and actinidin were investigated by stopped-flow spectral analysis. Differences in the forms of pH-dependence of the steady-state and pre-steady-state kinetic parameters support the hypothesis that, whereas for papain, in accord with the traditional view, the rate-determining step is the base-catalysed reaction of the acyl-enzyme intermediate with water, for actinidin it is a post-acylation conformational change required to permit release of the alcohol product and its replacement in the catalytic site by the key water molecule. Possible assignments of the kinetically influential pKa values, guided by the results of modelling, including electrostatic-potential calculations, and of the mechanistic roles of the ionizing groups, are discussed. It is concluded that Asp161 is the source of a key electrostatic modulator (pKa 5.0±0.1) in actinidin, analogous to Asp158 in papain, whose influence is not detected kinetically; it is always in the ‘on’ state because of its low pKa value (2.8±0.06).


1985 ◽  
Vol 227 (2) ◽  
pp. 521-528 ◽  
Author(s):  
F Willenbrock ◽  
K Brocklehurst

The pH-dependences of kcat, Km and kcat./Km for the hydrolysis at 25 degrees C at I 0.1 of L-arginine 2-naphthylamide catalysed by cathepsin H from bovine spleen were determined in the pH range approx. 4-8. The pH-dependences of these kinetic parameters were determined also for the hydrolysis at 25 degrees C at I 0.1 of N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide catalysed by cathepsin B (EC 3.4.22.1) from bovine spleen in the pH range 7-8, which extends the studies in acidic media reported by Willenbrock & Brocklehurst [(1984) Biochem. J. 222, 805-814]. These results are discussed and related to those from the reactivity-probe kinetics reported in the preceding paper [Willenbrock & Brocklehurst (1985) Biochem. J. 227, 511-519] and to known structural features present in rat liver cathepsins B and H and in papain (EC 3.4.22.2) and actinidin (EC 3.4.22.14). Consideration of the kinetic data leads to the suggestion that in the cysteine proteinases rearrangement of intimate S-/ImH+ ion-pairs in catalytic sites is brought about by a combination of field effects in the immediate vicinity of the ion-pair and consequences of protonic dissociation of a group with pKa 5-6 remote from the catalytic site. The contributions of the two types of effect seem to differ from enzyme to enzyme. Of the four cysteine proteinases considered, only cathepsin B exerts an absolute requirement for the proton-deficient form of a group with pKa 5-6 for catalytic activity. Protonic dissociation with pKa 5-6 enhances catalytic activity in cathepsin H and in actinidin and appears to have little or no effect in papain. Only cathepsin B lacks a polar or negatively charged side chain in the residue analogous to Asp-158 in papain, and this is suggested to account for its total dependence on a protonic dissociation remote from the catalytic site.


1983 ◽  
Vol 213 (3) ◽  
pp. 713-718 ◽  
Author(s):  
E Salih ◽  
K Brocklehurst

Benzofuroxan reacts with the catalytic-site thiol group of actinidin (EC 3.4.22.14, the cysteine proteinase from Actinidia chinensis) to produce stoicheiometric amounts of the chromophoric reduction product, o-benzoquinone dioxime, and of a catalytically inactive derivative of actinidin that is devoid of thiol and that is assumed to contain, initially at least, the sulphenic acid of cysteine-25. A similar result applies also to papain (EC 3.4.22.2). The rate of o-benzoquinone dioxime formation is neither increased by inclusion of 2-mercaptoethanol or hydroxylamine in the reaction mixture nor decreased by changing the solvent from H2O to 2H2O. The change of solvent was shown to be without effect also on the rate of reaction of benzofuroxan with papain. These results suggest that the reactions of benzofuroxan with both actinidin and papain involve rate-determining attack of the catalytic-site thiol group to produce an intermediate adduct that then reacts rapidly with water to form enzyme sulphenic acid and o-benzoquinone dioxime. The pH-dependence of the second-order rate constant for the reaction of benzofuroxan with actinidin was determined in the pH range 4.3-10.2. In marked contrast with the analogous reaction of papain (reported by Shipton & Brocklehurst [(1977) Biochem. J. 167, 799-810]) the pH-k profile for the actinidin reaction clearly contains a sigmoidal component with pKa 5.5, in which k increases with decreasing pH. These data together with the molecular pKa values for S-/ImH+ ion-pair formation and decomposition (3.0 and 9.6) suggest that the combined nucleophilic-electrophilic reactivity of the ion-pair of actinidin might be controlled by the state of ionization of another ionizing group, associated with the molecular pKa of 5.5. The pH-dependence of k for the reaction of actinidin with benzofuroxan at 25 degrees C at I 0.1 in aqueous buffers containing 6.7% (v/v) ethanol is probably adequately described by: k = k1/(1 + [H+]/KI + KII/[H+]) + k2/(1 + [H+]/KII + KIII/ [H+] + k3/(1 + [H+]/KIII) in which kI = 2.55 M -1 X s -1, k2 = 1.35 M -1, k3 = 0.93 M -1 X s -1, pKI = 3.0, pKII = 5.5 and pKIII = 9.6. By contrast, the analogous reaction of papain may be described by the same equation but with kI = 0, k2 = 2.2 M -1 X s -1, k3 = 1.3 M -1 X s -1, pKII = 3.6 and pKIII = 9.0.


Sign in / Sign up

Export Citation Format

Share Document