scholarly journals Pulsed cytochrome c oxidase from the thermophilic bacterium PS3

1984 ◽  
Vol 223 (3) ◽  
pp. 809-813 ◽  
Author(s):  
N Sone ◽  
A Naqui ◽  
C Kumar ◽  
B Chance

A caa3-type terminal cytochrome c oxidase (EC 1.9.3.1) from the thermophilic bacterium PS3 containing three subunits showed conversion from resting into pulsed form. Upon pulsing (reduction and re-oxidation), the cytochrome c oxidase activity increased over 10-fold. This enhanced activity of the pulsed enzyme gradually decayed. Addition of phospholipids, necessary for the enzyme activity, did not affect this decay process. Small changes in the absorption spectrum were observed for the resting-into-pulsed transition and for H2O2 ligation to the pulsed enzyme. The e.p.r. spectrum of the resting enzyme was very similar to that of mitochondrial enzyme, but the transient g = 5, 1.78 and 1.69 set of e.p.r. signals, associated with the pulsed bovine heart oxidase, were not observed in the case of pulsed bacterium-PS3 enzyme.

1988 ◽  
Vol 252 (1) ◽  
pp. 73-77 ◽  
Author(s):  
D A Berthold ◽  
D J Fluke ◽  
J N Siedow

The functional molecular mass of the cyanide-resistant salicylhydroxamate-sensitive duroquinol oxidase activity from Sympocarpus foetidus (skunk cabbage) and Sauromatum guttatum spadix mitochondria was determined by radiation-inactivation analysis. The functional molecular mass for the oxidase activity was found to be 26,700 Da for skunk cabbage and 29,700 Da for Sauromatum guttatum mitochondria frozen at ∗70 degrees C. Irradiation of dried mitochondrial samples resulted in a larger target size of 38,000 Da, and in some cases, a stimulation of activity at low dose of radiation. The functional molecular mass of cytochrome c oxidase activity from skunk-cabbage and bovine heart mitochondria was also investigated. Dried and frozen mitochondrial samples from both species yielded similar target sizes, in the range 70,900-73,400 Da. Purified bovine heart cytochrome c oxidase was also irradiated, and yielded a functional molecular mass of 66,400 Da. The target size of cytochrome c oxidase agrees with literature values insofar as the target size is considerably smaller than the molecular mass of the entire complex.


1991 ◽  
Vol 121 (7) ◽  
pp. 956-958 ◽  
Author(s):  
Sakiyo Yamaoka-Koseki ◽  
Reiko Urade ◽  
Makoto Kito

1986 ◽  
Vol 238 (1) ◽  
pp. 177-183 ◽  
Author(s):  
M Phillips ◽  
J Camakaris ◽  
D M Danks

The activity of two copper-dependent enzymes, cytochrome c oxidase and copper, zinc-superoxide dismutase, was determined in six tissues of age-matched (13-day-old) copper-deficient mutant and normal mice. In the two mutants ‘brindled’ and ‘blotchy’, brain, heart and skeletal muscle had significant enzyme deficiencies. Cytochrome c oxidase was more severely affected than was superoxide dismutase. In these three tissues the degree of deficiency could be correlated with decreased copper concentration; however, enzyme activity was normal in liver, kidney and lung, despite abnormal copper concentrations in these tissues. In nutritionally copper-deficient mice, all six tissues showed decreased enzyme activity, which was most marked in brain, heart and skeletal muscle, the tissues which showed enzyme deficiencies in the mutants. Analysis in vitro of cytochrome c oxidase (temperature coefficient = 2) at a single temperature was found to underestimate the deficiency of this enzyme in hypothermic copper-deficient animals. Cytochrome c oxidase deficiency may therefore be sufficiently severe in vivo to account for the clinical manifestations of copper deficiency. An injection of copper (50 micrograms of Cu+) at 7 days increased cytochrome c oxidase activity by 13 days in all deficient tissues of brindled mice, and in brain and heart from blotchy mice. However, skeletal-muscle cytochrome c oxidase in blotchy mutants did not respond to copper injection. Cytochrome c oxidase activity increased to normal in all tissues of nutritionally copper-deficient mice after copper injection, except in the liver. Hepatic enzyme activity remained severely deficient despite a liver copper concentration three times that found in copper-replete controls. Superoxide dismutase activity did not increase with treatment in either mutant, but its activity was higher than control levels in nutritionally deficient mice after injection. This difference is probably due to sequestration of copper in mutant tissue such as kidney, but a defect in the copper transport pathway to superoxide dismutase cannot be excluded.


2021 ◽  
Vol 296 ◽  
pp. 100485
Author(s):  
Natalie M. Garza ◽  
Aaron T. Griffin ◽  
Mohammad Zulkifli ◽  
Chenxi Qiu ◽  
Craig D. Kaplan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document