scholarly journals Inhibition of the apparent affinity of the epidermal growth factor receptor caused by phorbol diesters correlates with phosphorylation of threonine-654 but not other sites on the receptor

1986 ◽  
Vol 233 (2) ◽  
pp. 435-441 ◽  
Author(s):  
R J Davis ◽  
M P Czech

Addition of 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) to A431 human epidermoid carcinoma cells causes a marked increase in the phosphorylation state of the epidermal growth factor (EGF) receptor with a concomitant inhibition of both the high-affinity binding of 125I-EGF and the receptor tyrosine kinase activity. It was found in the present studies that the diuretic drug amiloride has no effect on the action of PMA to inhibit the binding of 125I-EGF. However, amiloride was observed to inhibit markedly the effect of PMA to cause a 3-fold increase in the phosphorylation state of the EGF receptors. In the presence of PMA and amiloride, the increase in the phosphorylation state of the EGF receptors was found to be only 1.2-fold over controls. Analysis of the EGF receptor phosphorylation sites by phosphopeptide mapping by reverse-phase h.p.l.c. demonstrated that PMA increases the phosphorylation state of the EGF receptor at many sites. One of these sites has been identified as a C-kinase substrate, threonine-654. In the presence of amiloride, PMA causes phosphorylation of threonine-654 to the same stoichiometry as that observed in the absence of amiloride. However, the marked increase in the phosphorylation state of the EGF receptor at other sites caused by PMA is abolished in the presence of amiloride. We conclude that the extensive phosphorylation of the EGF receptor at several sites caused by the addition of PMA to A431 cells is not required for the action of PMA to inhibit the high-affinity binding of 125I-EGF. The results indicate that the phosphorylation state of threonine-654 may play a role in this process.

2001 ◽  
Vol 356 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Lene E. JOHANNESSEN ◽  
Karianne E. HAUGEN ◽  
Anne Carine ØSTVOLD ◽  
Espen STANG ◽  
Inger Helene MADSHUS

When clathrin-dependent endocytosis is inhibited in HeLa cells by overexpression of a K44A (Lys44 → Ala) mutant of the GTPase dynamin, high-affinity binding of epidermal growth factor (EGF) to the EGF receptor (EGFR) is disrupted [Ringerike, Stang, Johannessen, Sandnes, Levy and Madshus (1998) J. Biol. Chem. 273, 16639–16642]. We now report that the effect of [K44A]dynamin on EGF binding was counteracted by incubation with the non-specific kinase inhibitor staurosporine (SSP), implying that a protein kinase is responsible for disrupted high-affinity binding of EGF upon overexpression of [K44A]dynamin. The effect of [K44A]dynamin on EGF binding was not due to altered phosphorylation of the EGFR, suggesting that the activated kinase is responsible for phosphorylation of a substrate other than EGFR. The number of EGFR molecules was increased in cells overexpressing [K44A]dynamin, while the number of proto-oncoprotein ErbB2 molecules was unaltered. EGF-induced receptor dimerization was not influenced by overexpression of [K44A]dynamin. ErbB2–EGFR heterodimer formation was found to be ligand-independent, and the number of heterodimers was not altered by overexpression of [K44A]dynamin. Neither SSP nor the phorbol ester PMA, which disrupts high-affinity EGF–EGFR interaction, had any effect on the EGFR homo- or hetero-dimerization. Furthermore, the EGF-induced tyrosine phosphorylation of ErbB2 was not affected by overexpression of [K44A]dynamin, implying that EGFR–ErbB2 dimers were fully functional. Our results strongly suggest that high-affinity binding of EGF and EGFR–ErbB2 heterodimerization are regulated by different mechanisms.


1998 ◽  
Vol 273 (27) ◽  
pp. 16639-16642 ◽  
Author(s):  
Tove Ringerike ◽  
Espen Stang ◽  
Lene E. Johannessen ◽  
Dagny Sandnes ◽  
Finn Olav Levy ◽  
...  

1986 ◽  
Vol 102 (2) ◽  
pp. 500-509 ◽  
Author(s):  
K Miller ◽  
J Beardmore ◽  
H Kanety ◽  
J Schlessinger ◽  
C R Hopkins

We have followed the internalization pathway of both epidermal growth factor (EGF) and its receptor in human epidermoid carcinoma (A431) cells. Using EGF conjugated with horseradish peroxidase and anti-receptor monoclonal antibodies (TL5 and EGFR1) coupled either directly or indirectly to colloidal gold we have identified an extensive elaboration of endosomal compartments, consisting of a peripheral branching network of tubular cisternae connected to vacuolar elements that contain small vesicles and a pericentriolar compartment consisting of a tubular cisternal network connected to multivesicular bodies. Immunocytochemistry on frozen thin sections using receptor-specific antibody-gold revealed that at 4 degrees C in the presence of EGF, receptors were mainly on the plasma membrane and, to a lesser extent, within some elements of both the peripheral and pericentriolar endosomal compartments. Upon warming to 37 degrees C there was an EGF-dependent redistribution of most binding sites, first to the peripheral endosome compartment and then to the pericentriolar compartment and lysosomes. Upon warming only to 20 degrees C the ligand-receptor complex accumulated in the pericentriolar compartment. Acid phosphatase cytochemistry identifies hydrolytic activity only within secondary lysosomes and trans cisternae of the Golgi stacks. Together these observations suggest that the prelysosomal endosome compartment extends to the pericentriolar complex and that the transfer of EGF receptor complexes to the acid phosphatase-positive lysosome involves a discontinuous, temperature-dependent step.


1986 ◽  
Vol 102 (1) ◽  
pp. 24-36 ◽  
Author(s):  
W A Dunn ◽  
T P Connolly ◽  
A L Hubbard

Substantial amounts of epidermal growth factor (EGF) are cleared from the circulation by hepatocytes via receptor-mediated endocytosis and subsequently degraded within lysosomes. We have used a combined biochemical and morphological approach to examine the fate of the receptor after exposure to EGF. Polyclonal antibodies were prepared against the purified receptor and their specificity established by immunoprecipitation and immunoblotting techniques. The EGF receptor was then localized by immunofluorescence and immunoperoxidase techniques and quantified on immunoblots. In untreated livers, EGF receptor was restricted to the sinusoidal and lateral surfaces of hepatocytes. 2-4 min after exposure of cells to EGF, the receptor was found in small vesicles (i.e., coated vesicles) as well as larger vesicles and tubules at the cell periphery. By 15 min the receptor was found in multivesicular endosomes located near bile canaliculi. Exposure of hepatocytes to EGF also resulted in a rapid loss of receptor protein from total liver homogenates and a decrease in its half-life from 8.7 h in control livers to 2.5 h. This EGF-induced loss of receptors was not observed when lysosomal proteinases were inhibited by leupeptin or when endosome/lysosome fusion was prevented by low temperature (16 degrees C). In the presence of leupeptin, receptor could be detected in structures identified as lysosomes using acid-phosphatase cytochemistry. All these results suggested rapid internalization of EGF receptors in response to ligand and degradation within lysosomes. However, four times more ligand was degraded at 8 h than the number of high-affinity (Kd of 8-15 nM) EGF-binding sites lost, suggesting either (a) high-affinity receptors were recycled, and/or (b) more than 300,000 receptors were available for EGF uptake. We identified and characterized a latent pool of approximately 300,000 low-affinity receptors (Kd approximately 200 nM) that could be separated on sucrose gradients from the plasma membrane pool of approximately 300,000 high-affinity receptors (Kd of 8-15 nM). Despite the differences in their binding affinities, the high- and low-affinity receptors appeared to be structurally identical and were both EGF-dependent protein kinases. In addition, the dynamics of the low-affinity receptors were consistent with a functional role in EGF uptake and delivery to lysosomes.


1988 ◽  
Vol 8 (3) ◽  
pp. 1345-1351 ◽  
Author(s):  
E Sturani ◽  
R Zippel ◽  
L Toschi ◽  
L Morello ◽  
P M Comoglio ◽  
...  

We have previously reported that antibodies to phosphotyrosine recognize the phosphorylated forms of platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) receptors (Zippel et al., Biochim. Biophys. Acta 881:54-61, 1986, and Sturani et al., Biochem. Biophys. Res. Commun. 137:343-350, 1986). In this report, the time course of receptor phosphorylation is investigated. In normal human fibroblasts, ligand-induced phosphorylation of PDGF and EGF receptors is followed by rapid dephosphorylation. However, in A431 cells the tyrosine-phosphorylated form of EGF receptor persists for many hours after EGF stimulation, allowing a detailed analysis of the conditions affecting receptor phosphorylation and dephosphorylation. In A431 cells, the number of receptor molecules phosphorylated on tyrosine was quantitated and found to be about 10% of total EGF receptors. The phosphorylated receptor molecules are localized on the cell surface, and they are rapidly dephosphorylated upon removal of EGF from binding sites by a short acid wash of intact cells and upon a mild treatment with trypsin. ATP depletion also results in rapid dephosphorylation, indicating that continuous phosphorylation-dephosphorylation reactions occur in the ligand-receptor complex at steady state. Phorbol 12-myristate 13-acetate added shortly before EGF reduces the rate and the final extent of receptor phosphorylation. Moreover, it also reduces the amount of phosphorylated receptors if it is added after EGF. Down-regulation of protein kinase C by chronic treatment with phorbol dibutyrate increases the receptor phosphorylation induced by EGF, suggesting a homologous feedback regulation of EGF receptor functions.


1986 ◽  
Vol 103 (1) ◽  
pp. 87-94 ◽  
Author(s):  
F A Wiegant ◽  
F J Blok ◽  
L H Defize ◽  
W A Linnemans ◽  
A J Verkley ◽  
...  

The structural interaction of the epidermal growth factor (EGF) receptor and the cytoskeleton of A431 cells has been studied using a monoclonal anti-EGF receptor antibody. This has been done with immunogold labeling using a variety of electron microscopical preparation procedures and EGF binding studies. By providing an image of the membrane-associated cytoskeleton, the dry cleavage method reveals a preferential localization of EGF receptors superimposed upon cytoskeletal filaments. The colocalization of gold particles with cytoskeletal filaments is not affected when pre-labeled cells are extracted with the non-ionic detergent Triton X-100, as visualized by dry cleavage. Using surface replication, this treatment results in visualization of the cytoskeleton. In these latter preparations, it is also observed that EGF receptor-coupled gold particles remain associated with cytoskeletal elements. Moreover, Triton extraction performed before immunogold labeling of EGF receptors demonstrates that isolated cytoskeletons contained binding sites for anti-EGF receptor antibodies. Using stereo micrographs of replica's obtained from these isolated cytoskeletons, it is shown that gold-labeled EGF receptors are exclusively present on the cortical membrane-associated region of the cytoskeleton and not on more intracellular-located filaments. Scatchard analysis of EGF binding to cells fixed with glutaraldehyde and treated with Triton X-100 before and after EGF binding indicates that a high affinity EGF binding site is associated with the Triton X-100 insoluble cytoskeleton.


Sign in / Sign up

Export Citation Format

Share Document