scholarly journals Active-site-serine d-alanyl-d-alanine-cleaving-peptidase-catalysed acyl-transfer reactions. Procedures for studying the penicillin-binding proteins of bacterial plasma membranes

1986 ◽  
Vol 235 (1) ◽  
pp. 159-165 ◽  
Author(s):  
J M Ghuysen ◽  
J M Frère ◽  
M Leyh-Bouille ◽  
M Nguyen-Distèche ◽  
J Coyette

Under certain conditions, the values of the parameters that govern the interactions between the active-site-serine D-alanyl-D-alanine-cleaving peptidases and both carbonyl-donor substrates and beta-lactam suicide substrates can be determined on the basis of the amounts of (serine ester-linked) acyl-protein formed during the reactions. Expressing the ‘affinity’ of a beta-lactam compound for a DD-peptidase in terms of second-order rate constant of enzyme acylation and first-order rate constant of acyl-enzyme breakdown rests upon specific features of the interaction (at a given temperature) and permits study of structure-activity relationships, analysis of the mechanism of intrinsic resistance and use of a ‘specificity index’ to define the capacity of a beta-lactam compound of discriminating between various sensitive enzymes. From knowledge of the first-order rate constant of acyl-enzyme breakdown and the given time of incubation, the beta-lactam compound concentrations that are necessary to achieve given extents of DD-peptidase inactivation can be converted into the second-order rate constant of enzyme acylation. The principles thus developed can be applied to the study of the multiple penicillin-binding proteins that occur in the plasma membranes of bacteria.

1983 ◽  
Vol 49 (03) ◽  
pp. 193-195 ◽  
Author(s):  
Torbjörn Nilsson

SummaryThe kinetics of the reaction between human plasma kallikrein and CĪ-esterase inhibitor was studied in a purified system. By monitoring the inhibition reaction for extended periods of time, it was found to proceed in two consecutive steps, a fast reversible second-order binding step followed by a slower, irreversible first-order transition. The rate constants in this reaction model were determined, as well as the dissociation constant of the initial, reversible enzyme-inhibitor complex. Thus, at 37° C the second-order rate constant was found to be 5 · 104 M -1 · s-1, the first order rate constant was 5 · 10-4 s-1 and the dissociation constant K was 1.5 · 10-8 M. Heparin (28 U/ml) and 6-aminohexanoic acid (10 mM) had no effect on the k1 of the of the reaction.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2029-2029
Author(s):  
S. Paul Bajaj ◽  
Amanda Sutton ◽  
Sreejesh Shanker ◽  
Amy E Schmidt ◽  
Sayeh Agah ◽  
...  

Abstract Factor VII (FVII) consists of an N-terminal γ-carboxyglutamic acid (Gla) domain followed by two epidermal growth factor-like (EGF1 and EGF2) domains and the C-terminal protease domain. Activation of FVII results in a two-chain FVIIa molecule consisting of a light chain (Gla-EGF1-EGF2 domains) and a heavy chain (protease domain) held together by a single disulfide bond. The complex of tissue factor (TF) and FVIIa activates FIX and FX during coagulation. FVIIa on its own is structurally more “zymogen-like” and when bound to TF it is more “active enzyme-like.” We obtained crystal structures of EGR-VIIa/soluble (s) TF (2.9 Å resolution), dansyl-EGR-VIIa/sTF (1.9 Å resolution) and benzamidine-VIIa/sTF (1.6 Å resolution). We also investigated the effect of TF binding on the S1, S2, and S3/S4 subsites (Schechter and Berger, BBRC, 27:157-162, 1967) in FVIIa. The affinity of variously inhibited FVIIa to sTF was also measured using Biacore technology. For obtaining second order inhibition rate constants, FVIIa ± soluble (s) TF was incubated with each inhibitor for various times, diluted several fold and assayed for the residual FVIIa activity. The second order rate constants were obtained by plotting the first order rate constants versus the inhibitor concentrations. These data are summarized in the table below. From these data it appears that all subsites are affected upon FVIIa binding to sTF. Since in the crystal structure of EGR-VIIa/sTF the P1 Arg residue is the only residue that makes contact with FVIIa, it follows that the S1 site is affected ~10-fold upon binding to sTF. Adding a dansyl group that partially occupies the S3/S4 position (1.9 Å structure) increases the second order rate constant 7-fold (2.41 versus 0.35) over that of EGR-ck. Moreover the addition of Pro (DFPR-ck) or Phe (DFFR-ck) residue occupying the S2 position increases the second order rate constant 357-fold and 1500- fold, respectively (125 and 525 versus 0.35). Thus, comparison of dEGR, DFPR, DFFR inhibition suggests that FVIIa prefers Phe at S2 and at S3/S4 positions, and that TF opens up the S1/S2/S3/S4 sites for substrate or inhibitor occupancy. These data are consistent with LTR (P3/P2/P1) residues in FX at its activation cleavage site as well as with LTR (P3/P2/P1) residues and FTR (P3/P2/P1) residues at the 145-146 and 180-181 FIX activation cleavage sites, respectively. Thus, these studies with chloromethylketone inhibitors have biologic relevance. For Biacore studies, sTF was amine coupled to a CM5 chip. The binding of unoccupied active site FVIIa in 5 mM calcium to sTF was characterized by a KD of 7 nM. Benzamidine (10 mM)-VIIa, p-aminobenzamidine (pAB, 1 mM)-VIIa, EGR-VIIa, dEGR-VIIa, DFPR-VIIa and DFFR-VIIa each bound to sTF with KD values ranging from 1- 2 nM. These affinity measurements indicate that the S1 site occupied FVIIa molecule (benzamidine-FVIIa, pAB-VIIa) has essentially the same conformation as the S1/S2/S3/S4 occupied FVIIa. This conclusion is consistent with similar crystal structures of variously inhibited FVIIa molecules complexed with sTF. The differential rates of incorporation of various chloromethylketone inhibitors could be due to the interaction of various residues (P1, P2, P3, P4) with the corresponding active subsites (S1/S2/S3/S4) of FVIIa. Additionally, the rate of incorporation of chloromethylketone inhibitors into FVIIa also involves the irreversible alkylation step, which could be faster for DFFR-ck and DFPR-ck. Once these inhibitors are incorporated, it appears that they induce the same conformation in FVIIa as achieved by S1 site occupancy alone. Thus S1 site occupancy in FVIIa induces the required conformation to modestly increase the affinity for TF. Second Order Rate Constants for Inhibition of FVIIa ± sTF with Various Chloromethylketone (ck) Inhibitors Inhibitor Minus sTF k (min−1 mM−1) Plus sTF k (min−1 mM−1) Fold Difference EGR-ck 0.04 0.35 8.8 dansyl EGR-ck 0.07 2.41 34.4 (D)FPR-ck 2.3 125 54.3 D)FFR-ck 5.6 525 93.8


1981 ◽  
Author(s):  
P G Grant ◽  
R F Colman ◽  
A K Sinha ◽  
R W Colman

Cyclic AMP phosphodiesterase (PDE) is a regulatory enzyme in human platelets. Inhibitors of this enzyme raise intracellular cAMP which prevents platelet activation. Little is known about the biochemistry of this enzyme. PDE was isolated from human platelet concentrates by nitrogen bomb cavitation. The specific activity of PDE in cell lysate was 0.064 nmoles cAMP hydrolysed/min/mg protein at 22° , 1 µM cAMP. Eighty percent of the activity appeared in the 100,000 × g supernatant fraction. Chromatography was performed on DEAE cellulose equibrated with 50 mM Tris- acetate pH 6.0, 3.75 mM 2-mercaptoethanol. A linear gradient with a limiting salt concentration of 1.0 M Na acetate separated two peaks of PDE activity. The first had a for cAMP of >100 µM; the second had a Km for cAMP of 5 µM. The lower enzyme was further purified by adsorption on blue dextran Sepharose in 50 mM Tris pH 7.5, 2 mM MgCl2 followed by affinity elution with 1 mM cAMP in the same buffer. These steps resulted in a 1700 purification of the enzyme (113 nmoles/min/mg). The compound 2’-0-iodohydrin- p-cAMP (IH-cAMP) is a cAMP derivative with an alkylating side chain. Incubation of PDE with 5 mM IH-cAMP at 37° resulted in 88% inactivation of the enzyme at 15 hours, compared to a control, with a corrected pseudo-first-order rate constant of 0.144 h-1. When cAMP (100 µM) was included in the inactivation mixture the corrected pseudo-first-order rate constant decreased to 0.064 h-1l. Thus, a 20-fold excess of cAMP protected 56% against inactivation by IH- cAMP. The inhibition was not reversed by gel filtration of the inactivated enzyme which removed IH-cAMP. These results suggest that IH-cAMP reacts with the active site of PDE to irreversibly inactivate the enzyme. IH-cAMP should prove to be a useful tool in understanding the chemistry of the active site of this important enzyme.


2002 ◽  
Vol 16 (3-4) ◽  
pp. 257-270 ◽  
Author(s):  
Susanne Elg ◽  
Johanna Deinum

The kinetics of the interactions between thrombin and antithrombin were studied by surface plasmon resonance. Although amine coupled thrombin binds low molecular weight active site inhibitors with a one-to-one stoichiometry hirudin only bound to 75% of the coupled active thrombin. However, antithrombin or thrombomodulin could not bind at all to amine-coupled thrombin. To make it possible to follow the reaction with antithrombin in time thrombin was therefore captured on an antibody against thrombin. Alternatively, antithrombin was captured on an antibody against antithrombin to follow complex formation with thrombin. With these techniques the second-order rate constant for the interaction of antithrombin with thrombin in the presence of heparin, was estimated to beka≥0.4×106 M−1 s−1withKD═ 50 nM for the formation of the initial complex. These values are similar to those found in solution. In the absence of heparin, the second-order rate constant for the interaction of thrombin with captured antithrombin was onlyka═ 9×103 M−1 s−1. Thus, with this technique rate constants for the interaction of proteases with serpins can be determined in a convenient way, without the need for stopped-flow. The rapid‒binding, active-site-directed thrombin inhibitor, melagatran, competed with the antithrombin-thrombin interaction. Although melagatran, a reversible thrombin inhibitor, initially prevented formation of the complex, ultimately the irreversible thrombin-antithrombin complex was always formed.


1984 ◽  
Vol 219 (3) ◽  
pp. 763-772 ◽  
Author(s):  
P Charlier ◽  
O Dideberg ◽  
J C Jamoulle ◽  
J M Frère ◽  
J M Ghuysen ◽  
...  

Several types of active-site-directed inactivators (inhibitors) of the Zn2+-containing D-alanyl-D-alanine-cleaving carboxypeptidase were tested. (i) Among the heavy-atom-containing compounds examined, K2Pt(C2O4)2 inactivates the enzyme with a second-order rate constant of about 6 X 10(-2)M-1 X S-1 and has only one binding site located close to the Zn2+ cofactor within the enzyme active site. (ii) Several compounds possessing both a C-terminal carboxylate function and, at the other end of the molecule, a thiol, hydroxamate or carboxylate function were also examined. 3-Mercaptopropionate (racemic) and 3-mercaptoisobutyrate (L-isomer) inhibit the enzyme competitively with a Ki value of 5 X 10 X 10(-9)M. (iii) Classical beta-lactam compounds have a very weak inhibitory potency. Depending on the structure of the compounds, enzyme inhibition may be competitive (and binding occurs to the active site) or non-competitive (and binding causes disruption of the protein crystal lattice). (iv) 6-beta-Iodopenicillanate inactivates the enzyme in a complex way. At high beta-lactam concentrations, the pseudo-first-order rate constant of enzyme inactivation has a limit value of 7 X 10(-4)S-1 X 6-beta-Iodopenicillanate binds to the active site just in front of the Zn2+ cofactor and superimposes histidine-190, suggesting that permanent enzyme inactivation is by reaction with this latter residue.


1977 ◽  
Vol 167 (3) ◽  
pp. 859-862 ◽  
Author(s):  
K Brocklehurst ◽  
H B F Dixon

1. Reactions of enzymes with site-specific reagents may involve intermediate adsorptive complexes formed by parallel reactions in several protonic states. Accordingly, a profile of the apparent second-order rate constant for the modification reaction (Kobs., the observed rate constant under conditions where the reagent concentration is low enough for the reaction to be first-order in reagent) against pH can, in general, reflect free-reactant-state molecular pKa values only if a quasi-equilibrium condition exists around the reactive protonic state (EHR) of the adsorptive complex. 2. Usually the condition for quasi-equilibrium is expressed in terms of the rate constants around EHR: (formula: see text) i.e. k mod. less than k-2. This often cannot be assessed directly, particularly if it is not possible to determine kmod. 3. It is shown that kmod. must be much less than k-2, however, if kobs. (the pH-independent value of kobs.) less than k+2. 4. Since probable values of k+2 greater than 10(6)M-1.S-1 and since values of kobs. for many modification reactions less than 10(6)M-1.S-1, the equilibrium assumption should be valid, and kinetic study of such reactions should provide reactant-state pKa values. 5. This may not apply to catalyses, because for them the value of kcat./Km may exceed 5 X 10(5)M-1.S-1. 6. The conditions under which the formation of an intermediate complex by parallel pathways may come to quasi-equilibrium are discussed in the Appendix.


1991 ◽  
Vol 275 (2) ◽  
pp. 335-339 ◽  
Author(s):  
H C Hawkins ◽  
R B Freedman

1. The number of reactive thiol groups in mammalian liver protein disulphide-isomerase (PDI) in various conditions was investigated by alkylation with iodo[14C]acetate. 2. Both the native enzyme, as isolated, and the urea-denatured enzyme contained negligible reactive thiol groups; the enzyme reduced with dithiothreitol contained two groups reactive towards iodoacetic acid at pH 7.5, and up to five reactive groups were detectable in the reduced denatured enzyme. 3. Modification of the two reactive groups in the reduced native enzyme led to complete inactivation, and the relationship between the loss of activity and the extent of modification was approximately linear. 4. Inactivation of PDI by alkylation of the reduced enzyme followed pseudo-first-order kinetics; a plot of the pH-dependence of the second-order rate constant for inactivation indicated that the essential reactive groups had a pK of 6.7 and a limiting second-order rate constant at high pH of 11 M-1.s-1. 5. Since sequence data on PDI show the presence within the polypeptide of two regions closely similar to thioredoxin, the data strongly indicate that these regions are chemically and functionally equivalent to thioredoxin. 6. The activity of PDI in thiol/disulphide interchange derives from the presence of vicinal dithiol groups in which one thiol group of each pair has an unusually low pK and high nucleophilic reactivity at physiological pH.


1974 ◽  
Vol 29 (11-12) ◽  
pp. 680-682 ◽  
Author(s):  
Peter Amsler ◽  
David Buisson ◽  
Helmut Sigel

The dephosphorylation of ATP was characterized by determining the dependence of the first-order rate constant on pH in the absence and presence of Zn2+ and together with Zn2+ and 2,2′-bipyridyl. The Zn2+-accelerated reaction passes through a pH optimum at about 8. The decrease in the rate at higher pH is due to the formation of Zn(ATP) (OH)3-; this species is relatively insensitive towards dephosphorylation. It is concluded that Zn(ATP)2- is the reactive species and that the interaction between N (7) and Zn2+ in this complex is crucial for its reactivity. In the presence of 2,2′-bipyridyl (Bipy) the ternary complex, Zn (Bipy) (ATP)2-, is formed which is rather stable towards dephosphorylation. It is suggested that the described effects of acceleration and inhibition are helpful for understanding the recycled processes in nature.


1990 ◽  
Vol 68 (2) ◽  
pp. 476-479
Author(s):  
Donald C. Wigfield ◽  
Douglas M. Goltz

The kinetics of the reconstitution reaction of apotyrosinase with copper (II) ions are reported. The reaction is pseudo first order with respect to apoenzyme and the values of these pseudo first order rate constants are reported as a function of copper (II) concentration. Two copper ions bind to apoenzyme, and if the second one is rate limiting, the kinetically relevant copper concentration is the copper originally added minus the amount used in binding the first copper ion to enzyme. This modified copper concentration is linearly related to the magnitude of the pseudo first order rate constant, up to a copper concentration of 1.25 × 10−4 M (10-fold excess), giving a second order rate constant of 7.67 × 102 ± 0.93 × 102 M−1∙s−1.Key words: apotyrosinase, copper, tyrosinase.


Sign in / Sign up

Export Citation Format

Share Document