scholarly journals Stimulation of phosphoinositide metabolism in hamster brown adipocytes exposed to α1-adrenergic agents and its inhibition with phorbol esters

1986 ◽  
Vol 236 (3) ◽  
pp. 757-764 ◽  
Author(s):  
R J Schimmel ◽  
D Dzierzanowski ◽  
M E Elliott ◽  
T W Honeyman

The present experiments were undertaken to investigate the role of the phosphoinositides phosphatidylinositol 4-phosphate (PtdIns-4-P) and phosphatidylinositol 4,5-biphosphate (PtdIns-4,5-P2) in the alpha 1-adrenergic stimulation of respiration in isolated hamster brown adipocytes. Exposure of isolated brown adipocytes to the alpha-adrenergic-receptor agonist phenylephrine provoked a breakdown of 30-50% of the PtdIns-4-P and PtdIns-4,5-P2 after prelabelling of the cells with [32P]Pi. Coincident with the breakdown of phosphoinositides was an accumulation of labelled phosphatidic acid, which continued for the duration of the cell incubation. The time course of phosphoinositide breakdown was defined more precisely by pulse-chase experiments. Under these conditions, phenylephrine caused radioactivity in phosphatidylinositol, PtdIns-4-P and PtdIns-4,5-P2 to fall by more than 50% within 30 s and to remain at the depressed value for the duration of the incubation (10 min). This phospholipid response to alpha-adrenergic stimulation was blocked by exposure of the cells to phorbol 12-myristate 13-acetate (PMA); likewise phenylephrine stimulation of respiration was prevented by PMA. beta-Adrenergic stimulation of respiration and inhibition of respiration by 2-chloroadenosine and insulin were, however, unaffected by treatment with PMA. On the assumption that PMA is acting in these cells as an activator of protein kinase C, these results suggest the selective interruption of alpha-adrenergic actions in brown adipocytes by activated protein kinase C. These findings suggest that breakdown of phosphoinositides is an early event in alpha-adrenergic stimulation of brown adipocytes which may be important for the subsequent stimulation of respiration. The results from the pulse-chase studies also suggest, however, that phenylephrine-stimulated breakdown of inositol phospholipids is a short-lived event which does not appear to persist for the entire period of exposure to the alpha 1-adrenergic ligand.

1996 ◽  
Vol 270 (4) ◽  
pp. G619-G633 ◽  
Author(s):  
M. Hocker ◽  
Z. Zhang ◽  
D. A. Fenstermacher ◽  
S. Tagerud ◽  
M. Chulak ◽  
...  

The enzyme L-histidine decarboxylase (HDC; EC 4.1.1.22), which converts L-histidine to histamine, plays a key role in the regulation of acid secretion. In the rat and human stomach, the peptide hormone gastrin appears to be one of the main regulators of HDC expression. In rats, marked elevation of gastric HDC mRNA abundance was observed within 12 h after induction of hypergastrinemia by a single injection of the proton-pump blocker omeprazole. In situ hybridization revealed that HDC expression occurred in the basal third of gastric glands where enterochromaffin-like cells are localized. To study the regulation of HDC gene transcription, 1,291 nucleotides of the 5'-flanking region of the rat HDC gene and the noncoding portion of exon 1 were cloned and sequenced. Gastrin and cholecystokinin (CCK) octapeptide equipotently stimulated the transcriptional activity of the rat HDC promoter three- to fourfold, and deletion analysis revealed the presence of a gastrin response element within 201 nucleotides upstream of the translational start site. Time-course studies revealed maximal activation of the HDC promoter after 12-36 h. Direct stimulation of protein kinase C (PKC) with the phorbol ester phorbol 12-myristate 13-acetate (PMA) substantially elevated rat HDC promoter activity, whereas induction of Ca2+ -dependent signaling pathways with thapsigargin was without effect. Downregulation or blockade of PKC abolished the effects of gastrin and PMA on the HDC promoter. These data indicate that stimulation of the CCK-B/gastrin receptor activates the rat HDC promoter in a time- and dose-dependent fashion and that this effect is primarily mediated via a PKC-dependent signaling pathway. Use of HDC as a model gene will allow further investigation of the intracellular pathways that are involved in gastrin-dependent gene regulation.


2005 ◽  
Vol 19 (4) ◽  
pp. 1012-1023 ◽  
Author(s):  
Bao T. Nguyen ◽  
Carmen W. Dessauer

Abstract Relaxin is a polypeptide hormone that activates the leucine-rich repeat containing G protein-coupled receptors, LGR7 and LGR8. In an earlier study, we reported that relaxin produces a biphasic time course and the second wave of cAMP is highly sensitive to phosphoinositide-3 kinase inhibitors (LY294002 and wortmannin). LY294002 inhibits relaxin-mediated increases in cAMP production by 40–50% across a large range of relaxin concentrations. Here we show that protein kinase C ζ (PKCζ) is a component of relaxin signaling in THP-1 cells. Sphingomyelinase increases cAMP production due to the release of ceramide, a direct activator of PKCζ. Chelerythrine chloride (a general PKC inhibitor) inhibits relaxin induced cAMP production to the same degree (∼40%) as LY294002. Relaxin stimulates PKCζ translocation to the plasma membrane in THP-1, MCF-7, pregnant human myometrial 1–31, and mouse mesangial cells, as shown by immunocytochemistry. PKCζ translocation is phosphoinositide-3 kinase dependent and independent of cAMP production. Antisense PKCζ oligodeoxynucleotides (PKCζ-ODNs) deplete both PKCζ transcript and protein levels in THP-1 cells. PKCζ-ODNs abolish relaxin-mediated PKCζ translocation and inhibit relaxin stimulation of cAMP by 40%, as compared with mock and random ODN controls. Treatment with LY294002 in the presence of PKCζ-ODNs results in little further inhibition. In summary, we present a novel role for PKCζ in relaxin-mediated stimulation of cAMP.


1985 ◽  
Vol 101 (1) ◽  
pp. 269-276 ◽  
Author(s):  
S Grinstein ◽  
S Cohen ◽  
J D Goetz ◽  
A Rothstein

The Na+/H+ antiport is stimulated by 12-O-tetradecanoylphorbol-13, acetate (TPA) and other phorbol esters in rat thymic lymphocytes. Mediation by protein kinase C is suggested by three findings: (a) 1-oleoyl-2-acetylglycerol also activated the antiport; (b) trifluoperazine, an inhibitor of protein kinase C, blocked the stimulation of Na+/H+ exchange; and (c) activation of countertransport was accompanied by increased phosphorylation of specific membrane proteins. The Na+/H+ antiport is also activated by osmotic cell shrinking. The time course, extent, and reversibility of the osmotically induced and phorbol ester-induced responses are similar. Moreover, the responses are not additive and they are equally susceptible to inhibition by trifluoperazine, N-ethylmaleimide, and ATP depletion. The extensive analogies between the TPA and osmotically induced effects suggested a common underlying mechanism, possibly activation of a protein kinase. It is conceivable that osmotic shrinkage initiates the following sequence of events: stimulation of protein kinase(s) followed by activation of the Na+/H+ antiport, resulting in cytoplasmic alkalinization. The Na+ taken up through the antiport, together with the HCO3- and Cl- accumulated in the cells as a result of the cytoplasmic alkalinization, would be followed by osmotically obliged water. This series of events could underlie the phenomenon of regulatory volume increase.


1992 ◽  
Vol 263 (2) ◽  
pp. C319-C325 ◽  
Author(s):  
S. N. Allo ◽  
L. L. Carl ◽  
H. E. Morgan

Phorbol 12-myristate 13-acetate (PMA), norepinephrine (NE), and contraction stimulate cardiomyocyte growth (increased protein content). Differences exist in the time course and extent of protein and RNA accumulation. Cells plated at 4 x 10(6) cells/60-mm dish and arrested with 50 mM KCl demonstrated no significant growth. Treatment with PMA stimulated growth to a maximum of 17% at 48 h. In contrast, maximal stimulation of growth was 36% at 48 h and 31% at 72 h for contracting and NE-treated cells, respectively. Maximal stimulation of the capacity for protein synthesis (RNA content) was 32% for PMA-treated cells at 24 h compared with 59% and 77% for NE-treated and contracting cells, respectively, at 72 h. In support of a primary role for altered capacity in the regulation of protein synthesis, there was a significant correlation (r = 0.84) between RNA and protein contents that was independent of the stimulus used. Angiotensin II increased RNA content by 28% at 48 h but had no effect on growth up to 72 h. Growth stimulation and increased nuclear protein kinase C (PKC) activity were induced by contraction, NE, and PMA treatment and were inhibited by staurosporine (a PKC inhibitor), suggestive of a central role for PKC.


1991 ◽  
Vol 260 (3) ◽  
pp. C635-C642 ◽  
Author(s):  
T. Kaku ◽  
E. Lakatta ◽  
C. Filburn

alpha 1-Adrenergic regulation of phosphoinositide metabolism and protein kinase C translocation was studied in isolated rat cardiac myocytes. Exposure of [3H]inositol-labeled myocytes to norepinephrine in the presence of propranolol caused a dose-dependent increase in [3H]inositol phosphates. Norepinephrine also increased the level of membrane-associated protein kinase C from approximately 10% of total activity to 18%, with a dose response similar to that for generation of inositol phosphates. Depolarization of myocytes with 30 mM KCl had no effect on inositol phosphates or membrane-associated protein kinase C but potentiated the effect of submaximal norepinephrine on both parameters. The potentiation of protein kinase C translocation was amplified when extracellular Ca2+ was increased to 4 mM, resulting in membrane association of one-third of the total cellular activity. These data show that activation of protein kinase C occurs during alpha 1-adrenergic stimulation of cardiac myocytes and that elevation of intracellular Ca2+ amplifies this effect at least in part through increased phosphoinositide metabolism.


1992 ◽  
Vol 263 (5) ◽  
pp. C1096-C1102 ◽  
Author(s):  
M. A. Wallert ◽  
O. Frohlich

The activation of Na-H exchange in adult rat heart myocytes was characterized in response to a phorbol ester (phorbol 12-myristate 13-acetate) and an alpha 1-adrenergic agonist [6-fluoronorepinephrine (6F-NE)]. Transport activation was assessed by determining the initial rate with which intracellular pH (pHi) was returned from an acid pulse and by following changes in steady-state pHi; pHi was determined by a pH-sensitive fluorescent dye. Both agonists shifted the intracellular pH dependence of Na-H exchange by 0.10-0.15 pH units in the alkaline direction. This shift was prevented by the presence of sphingosine and 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), inhibitors of protein kinase C. The agonists also alkalinized pHi at steady state. The alkalinization by 6F-NE was blocked by prazosin and H-7. This indicates that the adrenergic stimulation of cardiac Na-H exchange is mediated by an alpha 1-adrenergic mechanism and very likely involves the activation of protein kinase C.


1993 ◽  
Vol 293 (2) ◽  
pp. 523-530 ◽  
Author(s):  
R Nieuwland ◽  
G Van Willigen ◽  
J W Akkerman

Most agonists stimulate platelets by inducing Ca2+ mobilization, Ca2+ influx and protein kinase C (PKC) activation leading to Na+/H+ exchange, exposure of fibrinogen-binding sites and aggregation. In contrast, previous studies showed that adrenaline induces exposure of fibrinogen-binding sites and aggregation without appreciable changes in cystolic Ca2+ content or PKC activity. In the present study we investigated platelet responses mediated via alpha 2A-adrenergic receptors, using 4,4′-di-isothiocyanatostilbene-2,2′-disulphonic acid (DIDS), which is known to bind to this type of receptor. Addition of DIDS (2-20 microM) induced (i) a rise in cytosolic pH of 0.23 +/- 0.05 pH unit (n = 5) as detected by BCECF fluorescence, due to activation of the Na+/H+ exchanger, (ii) a 3.5-4-fold increase in the phosphorylation of the 47 kDa protein, a major substrate of PKC, (iii) exposure of 81,072 +/- 7293 (n = 3) binding sites for 125I-fibrinogen per platelet, and (iv) irreversible aggregation. These responses occurred without changes in cytosolic [Ca2+], secretion of dense-granule contents and enhanced phosphoinositide metabolism, and were not affected by inhibition of thromboxane A2 generation (30 microM indomethacin). The alpha 2A-adrenergic-receptor antagonists oxymetazoline (500 microM) and yohimbine (1 mM) completely abolished DIDS-induced responses. Inhibition of PKC (1 microM staurosporine) prevented phosphorylation of the 47 kDa protein, the increase in Na+/H+ exchange and exposure of fibrinogen-binding sites. Thus our present data suggest that activation of PKC is an early event in DIDS-induced platelet activation via the alpha 2A-adrenergic receptor, which precedes any of the other known signal-transducing sequences.


Sign in / Sign up

Export Citation Format

Share Document