scholarly journals Absence of positive co-operativity in the binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin to its cytosolic receptor protein

1987 ◽  
Vol 244 (3) ◽  
pp. 539-546 ◽  
Author(s):  
K Farrell ◽  
S Safe

The role of positive co-operativity in stabilizing the binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to the rat hepatic cytosolic TCDD receptor protein (Ah receptor) was investigated. The binding mechanism of TCDD was determined by kinetic means through equilibrium and saturation binding studies, and Scatchard and Hill plot analysis. In all studies, the slope of the Hill plot was close to 1.0, indicating the absence of positive co-operativity. Interpretation of the Scatchard plot was however complicated by the fact that both linear and nonlinear plots were experimentally obtained. The nonlinearity was shown to be an experimental artifact and a consequence not of co-operativity, but of high levels of nonspecific binding. The high level of nonspecific binding could be attributed to: (1) lipophilicity of the TCDD ligand, and (2) inefficient competition of receptor-bound [3H]TCDD. When nonspecific binding was minimized, the Scatchard slope was linear and in agreement with the Hill coefficient, thus indicating the lack of positive co-operativity in the binding of TCDD to the Ah receptor.

1998 ◽  
Vol 53 (1-2) ◽  
pp. 49-54
Author(s):  
Surendra Chandra Sabat ◽  
Subash Padhye ◽  
Prasanna Mohanty

Abstract Inhibitory effects of lanthanum-crown [La-(Pic)3 (15-crown-6) 3H2O].was investigated on the O2 evolution activity of photsystem II particles. Lanthanum (La)-crown inhibited the electron flow at the reducing side of PS II complex. Short duration (1-2 min) treatment of PS II membranes with trypsin partly developed resistance to La-crown inhibition. However, longer proteolytic treatment (>2 min) appeared to expose newer site(s) for La-crown inhibi­tion. The inhibitory constant (Ki) for La-crown was nearly 0.17 | μᴍ . This inhibitory capacity is about 4 to 5 times less than the potent PS II inhibitor diuron which also binds at the acceptor side of PS II. The number of binding sites for La-crown was found to be 1 per 20 chlorophyll molecules. The Hill plot analysis showed the presence of three distinct straight lines suggesting that the compound acts at least at three sites. Furthermore, from the slope value (Hill coefficient) it is suggested that two of these sites provide minimum of two binding domains for the inhibitor.


1974 ◽  
Vol 52 (12) ◽  
pp. 1137-1142 ◽  
Author(s):  
R. O. Hurst

Primary data for yeast aspartate transcarbamylase reported by Kaplan et al. ((1967) Arch. Biochem. Biophys. 119, 541–551) have been evaluated for the degree of fit to hyperbolic and sigmoidal functions. The restricted nature of their experimental design does not provide an adequate basis for discrimination between the types of mechanisms considered. Comparison of the parameter estimates obtained by the Hill plot and by nonlinear regression analysis demonstrated that the Hill plot may give rise to gross errors in the determination of the kinetic constants.


2019 ◽  
Vol 20 (9) ◽  
pp. 861-872 ◽  
Author(s):  
Andrea Bellelli ◽  
Emanuele Caglioti

Cooperative ligand binding is a fundamental property of many biological macromolecules, notably transport proteins, hormone receptors, and enzymes. Positive homotropic cooperativity, the form of cooperativity that has greatest physiological relevance, causes the ligand affinity to increase as ligation proceeds, thus increasing the steepness of the ligand-binding isotherm. The measurement of the extent of cooperativity has proven difficult, and the most commonly employed marker of cooperativity, the Hill coefficient, originates from a structural hypothesis that has long been disproved. However, a wealth of relevant biochemical data has been interpreted using the Hill coefficient and is being used in studies on evolution and comparative physiology. Even a cursory analysis of the pertinent literature shows that several authors tried to derive more sound biochemical information from the Hill coefficient, often unaware of each other. As a result, a perplexing array of equations interpreting the Hill coefficient is available in the literature, each responding to specific simplifications or assumptions. In this work, we summarize and try to order these attempts, and demonstrate that the Hill coefficient (i) provides a minimum estimate of the free energy of interaction, the other parameter used to measure cooperativity, and (ii) bears a robust statistical correlation to the population of incompletely saturated ligation intermediates. Our aim is to critically evaluate the different analyses that have been advanced to provide a physical meaning to the Hill coefficient, and possibly to select the most reliable ones to be used in comparative studies that may make use of the extensive but elusive information available in the literature.


1989 ◽  
Vol 264 (31) ◽  
pp. 18463-18471
Author(s):  
J P Landers ◽  
J Piskorska-Pliszczynska ◽  
T Zacharewski ◽  
N J Bunce ◽  
S Safe

1995 ◽  
Vol 10 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Byung-Woo Ryu ◽  
Shukla Roy ◽  
Barney R. Sparrow ◽  
Daniel P. Selivonchick ◽  
Henry W. Schaup

2001 ◽  
Vol 101 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Chris HILLIER ◽  
Mark C. PETRIE ◽  
Michael P. LOVE ◽  
Fiona JOHNSTON ◽  
Margaret R. MACLEAN ◽  
...  

Endothelin-1 (ET-1) and adrenomedullin (ADM) are both produced in the arterial wall, but have opposing biological actions. Evidence from experimental animals suggests a functional interaction between ET-1 and ADM. We have tested this in humans. Small resistance arteries were obtained from gluteal biopsies taken from patients with chronic heart failure (CHF) due to coronary heart disease (CHD), or with CHD and preserved ventricular function. The contractile responses to big ET-1 and to ET-1 in both sets of vessels were studied in the absence (control) and presence of ADM at 20 pmol/l (low ADM) or 200 pmol/l (high ADM), using wire myography. ADM did not affect the conversion of big ET-1 into ET-1 in vessels from patients with either CHD or CHF. Low ADM did not alter the contractile response to ET-1 in vessels from patients with CHF. Low ADM was not tested in vessels from patients with CHD, but high ADM did not affect this response in arteries from these patients. High ADM did, however, significantly reduce the vasoconstrictor effect of ET-1 in vessels from patients with CHF. The maximum response, as a percentage of the response to high potassium, was 199% (S.E.M. 25%) in the control experiments (n = 14), 205% (27%) in the low-ADM (n = 7) studies and 150% (17%) in the high-ADM (n = 6) experiments (P < 0.001). Furthermore, the Hill coefficient increased from 0.57±0.05 in the absence of ADM to 1.16±0.15 in the high-ADM experiments, indicating that ADM at 200 pmol/l specifically antagonized one receptor type in vessels from patients with CHF. We conclude that there is a one-site receptor interaction between ADM and ET-1 that is specific for vessels from patients with CHF. This functional interaction between ADM and ET-1 in resistance arteries may be of pathophysiological importance in CHF.


1998 ◽  
Vol 111 (2) ◽  
pp. 363-379 ◽  
Author(s):  
Izumi Sugihara

Effects of internal Sr2+ on the activity of large-conductance Ca2+-activated K+ channels were studied in inside-out membrane patches from goldfish saccular hair cells. Sr2+ was approximately one-fourth as potent as Ca2+ in activating these channels. Although the Hill coefficient for Sr2+ was smaller than that for Ca2+, maximum open-state probability, voltage dependence, steady state gating kinetics, and time courses of activation and deactivation of the channel were very similar under the presence of equipotent concentrations of Ca2+ and Sr2+. This suggests that voltage-dependent activation is partially independent of the ligand. Internal Sr2+ at higher concentrations (&gt;100 μM) produced fast and slow blockade both concentration and voltage dependently. The reduction in single-channel amplitude (fast blockade) could be fitted with a modified Woodhull equation that incorporated the Hill coefficient. The dissociation constant at 0 mV, the Hill coefficient, and zd (a product of the charge of the blocking ion and the fraction of the voltage difference at the binding site from the inside) in this equation were 58–209 mM, 0.69–0.75, 0.45–0.51, respectively (n = 4). Long shut events (slow blockade) produced by Sr2+ lasted ∼10–200 ms and could be fitted with single-exponential curves (time constant, τl−s) in shut-time histograms. Durations of burst events, periods intercalated by long shut events, could also be fitted with single exponentials (time constant, τb). A significant decrease in τb and no large changes in τl−s were observed with increased Sr2+ concentration and voltage. These findings on slow blockade could be approximated by a model in which single Sr2+ ions bind to a blocking site within the channel pore beyond the energy barrier from the inside, as proposed for Ba2+ blockade. The dissociation constant at 0 mV and zd in the Woodhull equation for this model were 36–150 mM and 1–1.8, respectively (n = 3).


2000 ◽  
Vol 278 (4) ◽  
pp. R891-R896 ◽  
Author(s):  
G. Supinski ◽  
D. Nethery ◽  
T. M. Nosek ◽  
L. A. Callahan ◽  
D. Stofan ◽  
...  

Recent work indicates that endotoxemia elicits severe reductions in skeletal muscle force-generating capacity. The subcellular alterations responsible for these decrements have not, however, been fully characterized. One possibility is that the contractile proteins per se are altered in endotoxemia and another is that the mechanism by which these proteins are activated is affected. The purpose of the present study was to assess the effects of endotoxin administration on the contractile proteins by examining the maximum calcium-activated force (Fmax) and calcium sensitivity of single Triton-skinned fibers of diaphragm, soleus, and extensor digitorum longus (EDL) muscles taken from control and endotoxin-treated (8 mg/kg) rats. Fibers were mounted on a force transducer and sequentially activated by serial immersion in solutions of increasing Ca2+ concentration (i.e., pCa 6.0 to pCa 5.0); force vs. pCa data were fit to the Hill equation. All fibers were typed at the conclusion of studies using gel electrophoresis. Fmax, the calcium concentration required for half-maximal activation (Ca50), and the Hill coefficient were compared as a function of muscle and fiber type for the control and endotoxin-treated animals. Control group Fmax was similar for diaphragm, soleus, and EDL fibers, i.e., 112.34 ± 2.64, 111.55 ± 3.66, and 104.05 ± 4.33 kPa, respectively. Endotoxin administration reduced the average Fmax for fibers from all three muscles to 80.25 ± 2.30, 72.47 ± 2.97, and 78.32 ± 2.43 kPa, respectively ( P < 0.001 for comparison of each to control). All fiber types in diaphragm, soleus, and EDL muscles manifested similar endotoxin-related reductions in Fmax. The Ca50 and the Hill coefficient for all fiber types and all muscles were unaffected by endotoxin administration. We speculate that these alterations in the intrinsic properties of the contractile proteins represent a major mechanism by which endotoxemia reduces muscle force-generating capacity.


Sign in / Sign up

Export Citation Format

Share Document