scholarly journals Stimulation of generation of inositol phosphates by carbamoylcholine and its inhibition by phorbol esters and iodide in dog thyroid cells

1989 ◽  
Vol 263 (3) ◽  
pp. 795-801 ◽  
Author(s):  
E Laurent ◽  
J Mockel ◽  
K Takazawa ◽  
C Erneux ◽  
J E Dumont

The action of carbamoylcholine (Cchol), NaF and other agonists on the generation of inositol phosphates (IPs) was studied in dog thyroid slices prelabelled with myo-[2-3H]inositol. The stimulation by Cchol (0.1 microM-0.1 mM) of IPs accumulation through activation of a muscarinic receptor [Graff, Mockel, Laurent, Erneux & Dumont (1987) FEBS Lett. 210, 204-210] was pertussis- and cholera-toxin insensitive. Ins(1,4,5)P3, Ins(1,3,4)P3 and InsP4 were generated. NaF (5-20 mM) also increased IPs generation (Graff et al., 1987); this effect was potentiated by AlCl3 (10 microM) and unaffected by pertussis toxin. Although phorbol dibutyrate (5 microM) abolished the cholinergic stimulation of IPs generation (Graff et al., 1987), it did not affect the fluoride-induced response. Cchol and NaF did not require extracellular Ca2+ to exert their effect, and neither KCl-induced membrane depolarization nor ionophore A23187 (10 microM) had any influence on basal IPs levels, or on cholinergic stimulation. However, more stringent Ca2+ depletion with EGTA (0.1 or 1 mM) decreased basal IPs levels as well as the amplitude of the stimulation by Cchol without abolishing it. Dibutyryl cyclic AMP, forskolin, cholera toxin and prostaglandin E1 had no effect on basal IPs levels and did not decrease the response to Cchol. Iodide (4 or 40 microM) also strongly decreased the cholinergic action on IPs, this inhibition being relieved by methimazole (1 mM). Our data suggest that Cchol activates a phospholipase C hydrolysing PtdIns(4,5)P2 in the dog thyroid cell in a cyclic AMP-independent manner. This activation requires no extracellular Ca2+ and depends on a GTP-binding protein insensitive to both cholera toxin and requires no extracellular Ca2+ and depends on a GTP-binding protein insensitive to both cholera toxin and pertussis toxin. The data are consistent with a rapid metabolism of Ins(1,4,5)P3 to Ins(1,3,4)P3 via the Ins(1,4,5)P3 3-kinase pathway, followed by dephosphorylation by a 5-phosphomonoesterase. Indeed, a Ca2+-sensitive InsP3 3-kinase activity was demonstrated in tissue homogenate. Stimulation of protein kinase C and an organified form of iodine inhibit the Cchol-induced IPs generation. The negative feedback of activated protein kinase C could be exerted at the level of the receptor or of the receptor-G-protein interaction.

1987 ◽  
Vol 65 (9) ◽  
pp. 1840-1847 ◽  
Author(s):  
Milton R. Brown ◽  
Catherine S. Chew

Acid secretory activity and respiration in rabbit gastric glands are stimulated by cAMP-dependent and -independent agonists. Potentiation between agonists suggests interaction of the activation pathways. Regulation of secretory response by protein kinase C was investigated with 12-O-tetradecanoyl phorbol-13-acetate (TPA). TPA elevated basal respiration, pepsin release, and acid secretion but inhibited histamine and carbachol stimulation of acid secretion by gastric glands, as measured by [dimethylamino-14C]aminopyrine accumulation. The inhibition of histamine response was specific for protein kinase C activators, occurred after a 20-min lag, and was not reversed by removal of TPA after 3 min of preincubation. TPA pretreatment inhibited acid secretory responses to cholera toxin and forskolin but enhanced the response to cAMP analogues. Cholera toxin and pertussis toxin simulated ADP-ribosylation of 45 and 41 kDa proteins, respectively, in parietal cell membranes. Therefore, both stimulatory (Gs) and inhibitory (Gi) GTP binding proteins of adenylyl cyclase appear to be present in parietal cells. Pretreatment with pertussis toxin attenuated PGE2 but not TPA inhibition of histamine stimulation of aminopyrine accumulation. Thus, the inhibitory effect of TPA does not appear to be associated with an action on Gi. The results with histamine and carbachol suggest that protein kinase C may regulate both cAMP-dependent and -independent stimulation of parietal cell acid secretion.


1988 ◽  
Vol 253 (3) ◽  
pp. 711-719 ◽  
Author(s):  
I Magnaldo ◽  
J Pouysségur ◽  
S Paris

Previous studies in Chinese-hamster fibroblasts (CCL39 line) indicate that an important signalling pathway involved in thrombin's mitogenicity is the activation of a phosphoinositide-specific phospholipase C, mediated by a pertussis-toxin-sensitive GTP-binding protein (Gp). The present studies examine the effects of thrombin on the adenylate cyclase system and the interactions between the two signal transduction pathways. We report that thrombin exerts two opposite effects on cyclic AMP accumulation stimulated by cholera toxin, forskolin or prostaglandin E1. (1) Low thrombin concentrations (below 0.1 nM) decrease cyclic AMP formation. A similar inhibition is induced by A1F4-, and both thrombin- and A1F4- –induced inhibitions are abolished by pertussis toxin. (2) Increasing thrombin concentration from 0.1 to 10 nM results in a progressive suppression of adenylate cyclase inhibition and in a marked enhancement of cyclic AMP formation in pertussis-toxin-treated cells. A similar stimulation is induced by an active phorbol ester, and thrombin-induced potentiation of adenylate cyclase is suppressed by down-regulation of protein kinase C. Therefore, we conclude that (1) the inhibitory effect of thrombin on adenylate cyclase is the direct consequence of the activation of a pertussis-toxin-sensitive inhibitory GTP-binding protein (Gi) possibly identical with Gp, and (2) the potentiating effect of thrombin on cyclic AMP formation is due to stimulation of protein kinase C, as an indirect consequence of Gp activation. Our results suggest that the target of protein kinase C is an element of the adenylate cyclase-stimulatory GTP-binding protein (Gs) complex. At low thrombin concentrations, activation of phospholipase C is greatly attenuated by increased cyclic AMP, leading to predominance of the Gi-mediated inhibition.


1990 ◽  
Vol 124 (2) ◽  
pp. 225-232 ◽  
Author(s):  
J. J. Hirst ◽  
G. E. Rice ◽  
G. Jenkin ◽  
G. D. Thorburn

ABSTRACT The effect of protein kinase C activation and dibutyryl cyclic AMP on oxytocin secretion by ovine luteal tissue slices was investigated. Several putative regulators of luteal oxytocin secretion were also examined. Oxytocin was secreted by luteal tissue slices at a basal rate of 234·4 ± 32·8 pmol/g per h (n = 24) during 60-min incubations.Activators of protein kinase C: phorbol 12,13-dibutyrate (n = 8), phorbol 12-myristate,13-acetate (n = 4) and 1,2-didecanoylglycerol (n = 5), caused a dose-dependent stimulation of oxytocin secretion in the presence of a calcium ionophore (A23187; 0·2 μmol/l). Phospholipase C (PLC; 50–250 units/l) also caused a dose-dependent stimulation of oxytocin secretion by luteal slices. Phospholipase C-stimulated oxytocin secretion was potentiated by the addition of an inhibitor of diacylglycerol kinase (R59 022; n = 4). These data suggest that the activation of protein kinase C has a role in the stimulation of luteal oxytocin secretion. The results are also consistent with the involvement of protein kinase C in PLC-stimulated oxytocin secretion. The cyclic AMP second messenger system does not appear to be involved in the control of oxytocin secretion by the corpus luteum. Journal of Endocrinology (1990) 124, 225–232


1989 ◽  
Vol 258 (1) ◽  
pp. 177-185 ◽  
Author(s):  
D M Blakeley ◽  
A N Corps ◽  
K D Brown

Highly purified platelet-derived growth factor (PDGF) or recombinant PDGF stimulate DNA synthesis in quiescent Swiss 3T3 cells. The dose-response curves for the natural and recombinant factors were similar, with half-maximal responses at 2-3 ng/ml and maximal responses at approx. 10 ng/ml. Over this dose range, both natural and recombinant PDGF stimulated a pronounced accumulation of [3H]inositol phosphates in cells labelled for 72 h with [3H]inositol. In addition, mitogenic concentrations of PDGF stimulated the release of 45Ca2+ from cells prelabelled with the radioisotope. However, in comparison with the response to the peptide mitogens bombesin and vasopressin, a pronounced lag was evident in both the generation of inositol phosphates and the stimulation of 45Ca2+ efflux in response to PDGF. Furthermore, although the bombesin-stimulated efflux of 45Ca2+ was independent of extracellular Ca2+, the PDGF-stimulated efflux was markedly inhibited by chelation of external Ca2+ by using EGTA. Neither the stimulation of formation of inositol phosphates nor the stimulation of 45Ca2+ efflux in response to PDGF were affected by tumour-promoting phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (TPA). In contrast, TPA inhibited phosphoinositide hydrolysis and 45Ca2+ efflux stimulated by either bombesin or vasopressin. Furthermore, whereas formation of inositol phosphates in response to both vasopressin and bombesin was increased in cells in which protein kinase C had been down-modulated by prolonged exposure to phorbol esters, the response to PDGF was decreased in these cells. These results suggest that, in Swiss 3T3 cells, PDGF receptors are coupled to phosphoinositidase activation by a mechanism that does not exhibit protein kinase C-mediated negative-feedback control and which appears to be fundamentally different from the coupling mechanism utilized by the receptors for bombesin and vasopressin.


1992 ◽  
Vol 12 (4) ◽  
pp. 263-271 ◽  
Author(s):  
Ulf H. Lerner ◽  
Gustaf Brunius ◽  
Thomas Modeer

Recombinant human interleukin-1β (IL-1β) and bradykinin (BK) synergistically stimulate prostaglandin E2 (PGE2) formation in human gingival fibroblasts cultured for 24 h. Neither BK or IL-1β per se, nor their combinations, caused any acute stimulation of cellular cyclic AMP accumulation. BK, but not IL-1β, caused a rapid, transient rise of intracellular Ca2+ concentration ([Ca2+]i), as assessed by recordings of fura-2 fluorescence in monolayers of prelabelled gingival fibroblasts. IL-1β did not change the effect of BK on [Ca2+]i. Ionomycin and A 23187, two calcium ionophores, synergistically potentiated the stimulatory effect of IL-1β on PGE2 formation. Three different phorbol esters known to activate protein kinase C also synergistically potentiated the action of IL-1β on PGE2 formation. Exogenously added arachidonic acid significantly enhanced the basal formation of PGE2. In IL-1β treated cells, the enhancement of PGE2 formation seen after addition of arachidonic acid, was synergistically upregulated by IL-1β. These data show that i) the synergistic interaction between IL-1β and BK on PGE2 formation is not due to an effect linked to an upregulation of cyclic AMP or [Ca2+]i; ii) the signal transducing mechanism by which BK interacts with IL-1β, however, may be linked to a BK induced stimulation of [Ca2+]i and/or protein kinase C; iii) the mechanism involved in the action of IL-1β may, at least partly, be due to enhancement of the biosynthesis of prostanoids mediated by an upregulation of cyclooxygenase activity.


Sign in / Sign up

Export Citation Format

Share Document