scholarly journals Interaction of egg-white glycoproteins and their oligosaccharides with the monomer and the hexamer of chicken liver lectin. A multivalent oligosaccharide-combining site exists within the carbohydrate-recognition domain

1990 ◽  
Vol 270 (3) ◽  
pp. 755-760 ◽  
Author(s):  
V E Piskarev ◽  
J Navrátil ◽  
H Karásková ◽  
K Bezouska ◽  
J Kocourek

Binding of egg-white glycoproteins and their oligosaccharides to hexameric solubilized form of the chicken hepatic lectin and the monomeric soluble fragment containing the carbohydrate-recognition domain has been investigated by several techniques. Ligand blotting revealed significant differences in binding to two forms of the lectin only for glycoproteins bearing multiple N-linked oligosaccharide moieties in their molecule (riboflavin-binding glycoprotein, avidin or ovomucoid). Inhibition studies indicated that inhibitory potency in a series of linear and branched N-acetyl-D-glucosamine-terminated oligosaccharides is critically dependent on the number and spatial arrangement of the terminal monosaccharide residues for both forms of the lectin. Direct binding of 4-hydroxyphenyl-derivatized radioiodinated oligosaccharides measured by equilibrium dialysis and frontal affinity chromatography points to the existence of two N-acetyl-D-glucosamine-combining sites per one subunit of the lectin, as has been recently reported for the rabbit and rat liver lectin [Lee & Lee (1988) Biochem. Biophys. Res. Commun. 155, 1444-1452]. Highly branch (penta-antennary) oligosaccharides interact with more than one subunit of the hexameric form of the lectin and thus resemble the more complex interaction of the whole glycoprotein.

2020 ◽  
Vol 21 (15) ◽  
pp. 5290 ◽  
Author(s):  
Silvia Achilli ◽  
João T. Monteiro ◽  
Sonia Serna ◽  
Sabine Mayer-Lambertz ◽  
Michel Thépaut ◽  
...  

C-type lectin receptor (CLR)/carbohydrate recognition occurs through low affinity interactions. Nature compensates that weakness by multivalent display of the lectin carbohydrate recognition domain (CRD) at the cell surface. Mimicking these low affinity interactions in vitro is essential to better understand CLR/glycan interactions. Here, we present a strategy to create a generic construct with a tetrameric presentation of the CRD for any CLR, termed TETRALEC. We applied our strategy to a naturally occurring tetrameric CRD, DC-SIGNR, and compared the TETRALEC ligand binding capacity by synthetic N- and O-glycans microarray using three different DC-SIGNR constructs i) its natural tetrameric counterpart, ii) the monomeric CRD and iii) a dimeric Fc-CRD fusion. DC-SIGNR TETRALEC construct showed a similar binding profile to that of its natural tetrameric counterpart. However, differences observed in recognition of low affinity ligands underlined the importance of the CRD spatial arrangement. Moreover, we further extended the applications of DC-SIGNR TETRALEC to evaluate CLR/pathogens interactions. This construct was able to recognize heat-killed Candida albicans by flow cytometry and confocal microscopy, a so far unreported specificity of DC-SIGNR. In summary, the newly developed DC-SIGNR TETRALEC tool proved to be useful to unravel novel CLR/glycan interactions, an approach which could be applied to other CLRs.


Author(s):  
Mattie S. M. Timmer ◽  
Thomas J. Teunissen ◽  
Kristel Kodar ◽  
Amy J. Foster ◽  
Sho Yamasaki ◽  
...  

H. pylori derived cholesteryl glycosides signal through the Carbohydrate Recognition Domain (CRD) of the Macrophage inducible C-type lectin (Mincle).


2006 ◽  
Vol 281 (15) ◽  
pp. 10410-10419 ◽  
Author(s):  
Tadashi Satoh ◽  
Ken Sato ◽  
Akira Kanoh ◽  
Katsuko Yamashita ◽  
Yusuke Yamada ◽  
...  

1991 ◽  
Vol 278 (3) ◽  
pp. 835-841 ◽  
Author(s):  
L J Askonas ◽  
J W Ricigliano ◽  
T M Penning

Rat liver 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) (EC 1.1.1.50) is an NAD(P)(+)-dependent oxidoreductase that is potently inhibited at its active site by non-steroidal anti-inflammatory drugs (NSAIDs). Initial-velocity and product-inhibition studies performed in either direction at pH 7.0 are consistent with a sequential ordered Bi Bi mechanism in which pyridine nucleotide binds first and leaves last. This mechanism is supported by fluorescence titrations of the E-NADH complex, and by the failure to detect the binding of either [3H]androsterone or [3H]androstanedione to free enzyme by equilibrium dialysis. Dead-end inhibition studies with NSAIDs also support this mechanism. Initial-velocity studies with indomethacin show that this drug is an uncompetitive inhibitor against NAD+, but a potent competitive inhibitor against androsterone, indicating the ordered formation of an E.NAD+.indomethacin complex. Calculation of the individual rate constants reveals that the binding and release of pyridine nucleotide is rate-limiting and that isomerization of the central complex is favoured in the forward direction. Equilibrium dialysis experiments with [14C]indomethacin reveal the presence of two abortive NSAID complexes, a high-affinity ternary complex corresponding to E.NAD+.indomethacin (Kd = 1-2 microM for indomethacin) and a low-affinity binary complex corresponding to E.indomethacin (Kd = 22 microM for indomethacin). Since indomethacin has a low affinity for free enzyme, the formation of this abortive binary complex does not complicate kinetic measurements which are made in the presence of NAD+, but may contribute to the inhibition of the enzyme by NSAIDs. Using either pro-R-[4-3H]NADH or pro-S-[4-3H]NADH as cofactor, radiolabelled androsterone was formed only when the pro-R-[4-3H]NADH was used, confirming that purified 3 alpha-HSD is a Class A dehydrogenase.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Francisco Vassiliepe Sousa Arruda ◽  
Arthur Alves Melo ◽  
Mayron Alves Vasconcelos ◽  
Romulo Farias Carneiro ◽  
Ito Liberato Barroso-Neto ◽  
...  

Lectins are sugar-binding proteins widely distributed in nature with many biological functions. Although many lectins have a remarkable biotechnological potential, some of them can be cytotoxic. Thus, the aim of this study was to assess the toxicity of five lectins, purified from seeds of different species ofCanavaliagenus. In order to determine the toxicity, assays withArtemianauplii were performed. In addition, a fluorescence assay was carried out to evaluate the binding of lectins toArtemianauplii. In order to verify the relationship between the structure of lectins and their cytotoxic effect, structural analysis was carried out to evaluate the volume of the carbohydrate recognition domain (CRD) of each lectin. The results showed that all lectins exhibited different toxicities and bound to a similar area in the digestive tract ofArtemianauplii. Concerning the structural analysis, differences in spatial arrangement and volume of CRD may explain the variation of the toxicity exhibited by each lectin. To this date, this is the first study that establishes a link between toxicity and structure of CRD from Diocleinae lectins.


Sign in / Sign up

Export Citation Format

Share Document