scholarly journals Phosphorylation by casein kinase II alters the biological activity of calmodulin

1992 ◽  
Vol 283 (1) ◽  
pp. 21-24 ◽  
Author(s):  
D B Sacks ◽  
H W Davis ◽  
J P Williams ◽  
E L Sheehan ◽  
J G N Garcia ◽  
...  

Calmodulin is the major intracellular Ca(2+)-binding protein, providing Ca(2+)-dependent regulation of numerous intracellular enzymes. The phosphorylation of calmodulin may provide an additional mechanism for modulating its function as a signal transducer. Phosphocalmodulin has been identified in tissues and cells, and calmodulin is phosphorylated both in vitro and in intact cells by various enzymes. Phosphorylation of calmodulin on serine/threonine residues by casein kinase II decreases its ability to activate both myosin-light-chain kinase and cyclic nucleotide phosphodiesterase. For myosin-light-chain kinase the primary effect is an inhibition of the Vmax. of the reaction, with no apparent change in the concentration at which half-maximal velocity is attained (K0.5) for either Ca2+ or calmodulin. In contrast, for phosphodiesterase, phosphorylation of calmodulin significantly increases the K0.5 for calmodulin without noticeably altering the Vmax. or the K0.5 for Ca2+. The higher the stoichiometry of phosphorylation of calmodulin, the greater the inhibition of calmodulin-stimulated activity for both enzymes. Therefore the phosphorylation of calmodulin by casein kinase II appears to provide a Ca(2+)-independent mechanism whereby calmodulin regulates at least two important target enzymes, myosin-light-chain kinase and cyclic nucleotide phosphodiesterase.

1985 ◽  
Vol 230 (3) ◽  
pp. 695-707 ◽  
Author(s):  
P K Ngai ◽  
M P Walsh

Chicken gizzard smooth muscle contains two major calmodulin-binding proteins: caldesmon (11.1 microM; Mr 141 000) and myosin light-chain kinase (4.6 microM; Mr 136 000), both of which are associated with the contractile apparatus. The amino acid composition of caldesmon is distinct from that of myosin light-chain kinase and is characterized by a very high glutamic acid content (25.5%), high contents of lysine (13.6%) and arginine (10.3%), and a low aromatic amino acid content (2.4%). Caldesmon lacked myosin light-chain kinase and phosphatase activities and did not compete with either myosin light-chain kinase or cyclic nucleotide phosphodiesterase (both calmodulin-dependent enzymes) for available calmodulin, suggesting that calmodulin may have distinct binding sites for caldesmon on the one hand and myosin light-chain kinase and cyclic nucleotide phosphodiesterase on the other. Consistent with the lack of effect of caldesmon on myosin phosphorylation, caldesmon did not affect the assembly or disassembly of myosin filaments in vitro. As previously shown [Ngai & Walsh (1984) J. Biol. Chem. 259, 13656-13659], caldesmon can be reversibly phosphorylated. The phosphorylation and dephosphorylation of caldesmon were further characterized and the Ca2+/calmodulin-dependent caldesmon kinase was purified; kinase activity correlated with a protein of subunit Mr 93 000. Caldesmon was not a substrate of myosin light-chain kinase or phosphorylase kinase, both calmodulin-activated protein kinases.


Author(s):  
J. T. Stull ◽  
D. K. Blumenthal ◽  
B. R. Botterman ◽  
G. A. Klug ◽  
D. R. Manning ◽  
...  

1994 ◽  
Vol 72 (11) ◽  
pp. 1377-1379 ◽  
Author(s):  
Setsuro Ebashi ◽  
Hideto Kuwayama

The 155-kDa component of bovine stomach, which exhibits a strong actomyosin (AM) activating activity and a relatively weak myosin light chain kinase (MLCK) activity, has a strong affinity for the actin filament and the actin-binding site is confined to an 80 amino acid residue on its N-terminal side. This affinity may play a crucial role in AM activation. Some reagents preferentially abolish either the AM-activating effect or MLCK activity. In conclusion, MLCK of the 155-kDa component does not play a fundamental role in activating the AM system as far as the in vitro system is concerned. The possible mechanism of AM activation by the component is discussed.Key words: myosin light chain kinase, phosphorylation of myosin light chain, leiotonin, wortmannin, beryllium sulfate.


1989 ◽  
Vol 108 (2) ◽  
pp. 553-567 ◽  
Author(s):  
V Papadopoulos ◽  
P F Hall

The cytoskeletons of Y-1 mouse adrenal tumor cells contain a calcium and phospholipid-dependent protein kinase (protein kinase C) that is bound sufficiently tight to resist extraction by 0.5% Triton but not by 1.0% Triton. The enzyme has been purified to near homogeneity from cytoskeleton and cytosol. It shows features typical of this type of kinase, namely a requirement for Ca2+ and phospholipid, stimulation by tumor promoters but not by nontumor-promoting phorbol esters, and inhibition by trifluoperazine. The enzyme shows specificity for four substrates found in the cytoskeleton, namely 80, 33, 20, and 18 kD. The first three substrates are phosphorylated by the enzyme; the fourth is dephosphorylated and is therefore affected by the kinase indirectly. The 80-kD protein is the kinase enzyme itself which is autophosphorylated in vitro and in the cytoskeleton. The 20-kD protein is myosin light chain. The 33- and 18-kD proteins are unidentified. The same substrates were phosphorylated when Y-1 cells were permeabilized with digitonin and incubated with [gamma-32P]ATP and phorbol-12-myristate-13-acetate. Partly purified protein kinase C changes the extent of phosphorylation of the same substrates when added to cytoskeletons previously extracted to remove endogenous protein kinase C. Addition of Ca2+, phosphatidylserine, and phorbol-12-myristate-13-acetate to cytoskeletons, and addition of these three agents plus protein kinase C to extracted cytoskeletons, causes these structures to undergo a rapid and extensive rounding. A similar change is induced in intact cells by addition of phorbol ester. It is concluded that protein kinase C is capable of changing the shape of adrenal cells by an action that involves autophosphorylation and phosphorylation of myosin light chain. This response may in turn be related to the steroidogenic responses to ACTH and cyclic AMP.


1987 ◽  
Vol 104 (5) ◽  
pp. 1309-1323 ◽  
Author(s):  
L M Griffith ◽  
S M Downs ◽  
J A Spudich

We have partially purified myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) from Dictyostelium discoideum. MLCK was purified 4,700-fold with a yield of approximately 1 mg from 350 g of cells. The enzyme is very acidic as suggested by its tight binding to DEAE. Dictyostelium MLCK has an apparent native molecular mass on HPLC G3000SW of approximately 30,000 D. Mg2+ is required for enzyme activity. Ca2+ inhibits activity and this inhibition is not relieved by calmodulin. cAMP or cGMP have no effect on enzyme activity. Dictyostelium MLCK is very specific for the 18,000-D light chain of Dictyostelium myosin and does not phosphorylate the light chain of several other myosins tested. Myosin purified from log-phase amebas of Dictyostelium has approximately 0.3 mol Pi/mol 18,000-D light chain as assayed by glycerol-urea gel electrophoresis. Dictyostelium MLCK can phosphorylate this myosin to a stoichiometry approaching 1 mol Pi/mol 18,000-D light chain. MLCP, which was partially purified, selectively removes phosphate from the 18,000-D light chain but not from the heavy chain of Dictyostelium myosin. Phosphatase-treated Dictyostelium myosin has less than or equal to 0.01 mol Pi/mol 18,000-D light chain. Phosphatase-treated myosin could be rephosphorylated to greater than or equal to 0.96 mol Pi/mol 18,000-D light chain by incubation with MLCK and ATP. We found myosin thick filament assembly to be independent of the extent of 18,000-D light-chain phosphorylation when measured as a function of ionic strength. However, actin-activated Mg2+-ATPase activity of Dictyostelium myosin was found to be directly related to the extent of phosphorylation of the 18,000-D light chain. MLCK-treated myosin moved in an in vitro motility assay (Sheetz, M. P., and J. A. Spudich, 1983, Nature (Lond.), 305:31-35) at approximately 1.4 micron/s whereas phosphatase-treated myosin moved only slowly or not at all. The effects of phosphatase treatment on the movement were fully reversed by subsequent treatment with MLCK.


1982 ◽  
Vol 204 (3) ◽  
pp. 817-824 ◽  
Author(s):  
P J Blackshear ◽  
R A Nemenoff ◽  
J Avruch

Exposure of 32P-labelled isolated rat adipocytes or epididymal fat-pads to insulin resulted in an increase in the phosphorylation of a heat-stable acid-soluble protein of Mr 22 000. The phosphorylation of this protein was unaffected by isoprenaline (isoproterenol) in intact cells, nor was its phosphorylation catalysed by exposure in vitro to the cyclic AMP-dependent protein kinase or smooth-muscle myosin light-chain kinase. The properties of the Mr-22 000 protein include: heat-stability; solubility in 1% trichloroacetic acid; pI 4.9; elution at apparent Mr 37 500 on gel filtration; and it contains both phosphoserine and phosphothreonine. It can be distinguished from the heat-stable phosphatase inhibitor 1 of adipose tissue (inhibitor 1A) and the phosphorylated form of adipose-tissue myosin light chain by several criteria. Its identity, and the possible functional significance of the insulin-stimulated phosphorylation, remain problems for future study.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Guangliang Wang ◽  
Xiaofeng Zhang ◽  
Wei Cheng ◽  
Yanxuan Mo ◽  
Juan Chen ◽  
...  

AbstractChromodomain helicase/ATPase DNA-binding protein 1-like gene (CHD1L) has been characterized to be a driver gene in hepatocellular carcinoma (HCC). However, the intrinsic connections between CHD1L and intestinal dysbacteriosis-related inflammation reaction in HCC progression remain incompletely understood. In this study, a specific correlation between CHD1L and nonmuscle isoform of myosin light chain kinase (nmMLCK/nmMYLK), a newly identified molecule associated NF-κB signaling transduction, was disclosed in HCC. CHD1L promotes nmMYLK expression and prevents lipopolysaccharide (LPS) induced tumor cell death. In vitro experiment demonstrated that overexpressed nmMYLK is essential for CHD1L to maintain HCC cell alive, while knocking down nmMYLK significantly attenuate the oncogenic roles of CHD1L. Mechanism analysis revealed that nmMYLK can prevent Caspase-8 from combining with MyD88, an important linker of TLRs signaling pathway, while, knocking down nmMYLK facilitate the MyD88 combines with Caspase-8 and lead to the proteolytic cascade of Caspase as well as the consequent cell apoptosis. Mechanism analysis showed that CHD1L promotes the nmMYLK expression potentially through upregulating the heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) expression, which can bind to myosin light chain kinase (MYLK) pre-mRNA and lead to the regnant translation of nmMYLK. In summary, this work characterizes a previously unknown role of CHD1L in preventing LPS-induced tumor cell death through activating hnRNP A2/B1-nmMYLK axis. Further inhibition of CHD1L and its downstream signaling could be a novel promising strategy in HCC treatment.


Sign in / Sign up

Export Citation Format

Share Document